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Summary

Highly automated vehicles are defined as automated vehicles where the human driver does not have
to monitor the vehicle’s behaviour and its environment. This requirement makes the environment
perception system one of the most crucial components of such a vehicle. This thesis addresses
some of the challenges in the development of environment perception methods for highly automated
driving.

Research objectives. In order to realize highly automated driving in urban environments, a
lot of research still has to be done on making environment perception more robust. The rather
limited capabilities of the current state the of art sensor-based environment perception for urban
environments, motivates research objective 1: Improve the capabilities of sensor-based perception
in urban environments using close-to-market sensors.

However, it is unrealistic to assume that in the near future all elements in the environment,
relevant for highly automated driving, will be perceived based on only sensor data. Instead,
detailed digital maps will play an important role for the perception of those elements for which no
robust sensor-based methods are available yet. Thus, a near-future perception system for highly
automated driving must be able to combine sensor-based perception with data from digital maps.
This requirement defines objective 2: Develop methodology to combine sensor-based perception
with data from an a priori map in order to perceive all relevant elements.

Unfortunately all automated vehicles demonstrated thus far assume the contents of a digital
map to be correct. This may be acceptable for a partially automated system where a human
driver has to monitor the system, but not for a highly automated vehicle. Since this problem has
been rarely a topic of scientific research, although it is considered to be very significant, it forms
objective 3: Formulate and investigate the problem of verifying the correctness of a priori map
data before the vehicle acts on it.

The three research objectives described above are too hard to investigate in their full generality
within a single thesis. Therefore these objectives are studied in a specific context, namely the
perception of roundabouts. Roundabouts form an increasingly important part of urban road
systems, and they have very different characteristics from regular intersections. Despite their
increasing importance, the perception of roundabouts has not been studied so far by the automated
driving research community. Hence, the study of roundabouts not only serves as a test bed for the
research objectives above, it is also interesting in its own right. Therefore research objective 4 is:
Develop methods for the perception of roundabouts based on sensor data and a priori digital map
data.

Contributions of the thesis. One of the problems that arises if we want to replace the fully-
map-based perception of urban roads by sensor-based perception, is ambiguity about the structure
of the road. This problem is addressed in the thesis where a multi-hypothesis road representation
is presented as a contribution to research objective 1. Instead of letting the perception system
choose the most likely hypothesis about the road and send this hypothesis to the behaviour
generation system, the idea behind the presented representation is to send the set of all plausible
road hypotheses.

A contribution to both research objectives 1 and 4 is made by the presentation of a method
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for detecting central islands of roundabouts using a close-to-market laser scanner. An extensive
evaluation of this method is done where not only the detection rate is evaluated, but also the
quality of the input data, the error distributions of the detected central islands, and causes of
missed detections.

Based on the central-island detector, a method is presented for the perception of all relevant
elements of a roundabout, which is a contribution to research objectives 2 and 4. The output of
the central-island detector and a road marking detector are fused with a detailed a priori digital
map to achieve a complete perception of the roundabout. The method localizes itself relative to
this digital map without the need of a precise GNSS or additional landmarks in the map.

Verifying the correctness of a digital map, before the automated vehicle acts on it, is a topic
discussed in the thesis which contributes to research objective 3. First, possible requirements on
map verification for highly automated driving are discussed. Then the map verification problem is
formally specified in a probabilistic way. This specification is followed by a proposal for a generic
map verification model, and a description of how it can be applied to verify the correctness of
the map of a roundabout’s central island (thus it also contributes to objective 4). The presented
verification model is analysed based on this application and its discussion identifies the difficulties
and challenges that arise for approaches like the proposed verification method.
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Chapter 1

Introduction

1.1 Introduction to Automated Driving

The first ideas about automated driving date back to the 1950s. According to a survey by Fenton
[Fen70], the General Motor Corporation was the first to start research on an automatic vehicle
system for “speed control” and “variable spacing”. The vision of automated driving was also
picked up by the public, as shown in the 1956 advertisement in figure 1.1 by America’s Independent
Electric Light and Power Companies. This advertisement also describes what the advantages of
automated driving may be, which are still the objectives of its development today: increased safety,
more comfort, being able to spend your time on things different from driving and the reduction
of traffic jams.

Due to the limited capabilities of computers and imaging sensors, the earliest concepts, such
as those by the General Motors Company, mainly relied on infrastructure modifications (e.g.
magnetic cables integrated in road) for the guidance of the vehicles [Fen70]. With the increasing
performance of computers and digital imaging sensors, significant progress was made in the late
eighties. One important milestone was the demonstration of the VaMoRs vehicle [Sie03] in 1987 by
the group of Ernst Dickmanns at the Bundeswehr University Munich. VaMoRs drove automated
on a part of the German A92 motorway, which had not yet been released for public traffic, based
on computer vision for the recognition of the road.

Another important event was the Urban Challenge organized by DARPA in 2007 [UAB+08],
where automated vehicles without any occupants had to drive 97 km through an urban environment
(closed for the public), interacting with other moving vehicles and obeying the California Driver
Handbook. In this challenge, 53 teams from around the world had the opportunity to show the
automated driving capabilities of their cars. Only 11 of these teams qualified for the final event of
the challenge. Most of the finalists, such as the winning vehicle of the Carnegie Mellon University
[UAB+08], based their system mainly on high-resolution laser scanners, radars and high-precision
GPS in combination with a digital map provided by the event’s organization. After the challenge,
many of the participating research groups continued the research and development of their vehicles,
thus forming the basis of automated driving demonstrations that followed the challenge [BDF+14].

The architecture of automated vehicles comprises three main components, as illustrated in
figure 1.2: sensors, a data processing component and actuators. The data processing component
is usually divided in three subcomponents: an environment perception system, a behaviour plan-
ning system and a vehicle control system. Sensors generate measurements, of elements of the
environment or the vehicle itself. First, the environment perception system processes these mea-
surements in order to detect and quantify all elements of the environment that are relevant for
the automated functionality. Optionally, the perception system may also use a priori knowledge
about the environment such as a digital map. The result is an environment representation that
serves as the input to the behaviour planning system. The behaviour planning system decides how
the vehicle should behave in terms of manoeuvres and plans the vehicle’s trajectory and velocity

1



2 1. Introduction

Figure 1.1: An image from a 1956 advertisement that was accompanied with the text “One day your car
may speed along an electric super-highway, its speed and steering automatically controlled by electronic
devices embedded in the road. Travel will be more relaxing and enjoyable. Highways will be made safe –
by electricity! No traffic jams... no collisions... no driver fatigue.” [Ame56]

actuatorssensors
environment
perception

behaviour
planning

vehicle
control

data processing

Figure 1.2: The major components in which an automated driving system is commonly subdivided.

profile. Finally, the vehicle control system translates this planned trajectory and velocity profile
into the actual movement of the vehicle through its actuators.

Although to date there are no production vehicles capable of automated driving, some of
the technology that was developed for the ultimate goal of automated driving found its way to
production vehicles as part of driver assistance systems and active safety systems. By combining
electronic throttle control, an electronic braking system and radar sensors that allow measuring the
distance to an upfront vehicle and its velocity, adaptive cruise control made it possible to automate
the longitudinal control of a vehicle. Being introduced in production vehicles in 1999, this made
adaptive cruise control the first form of vehicle automation that responds to its environment. A
few years later, the same sensors and actuators were used in production vehicles for long-range
collision mitigation systems. The computer vision methods for road recognition were used for lane
departure warning. As the performance of these methods increased, they were used for active lane
keeping assistance. In 2013 the first production vehicle was introduced that features traffic jam
assistance. This system combines the automated longitudinal and lateral control of the vehicle
in traffic jams and allows the driver to take his/her hands of the steering wheel while the system
is active for velocities up to 30 km/h. A comprehensive overview of the development of driver
assistance systems is given in a review by Bengler et al. [BDF+14].

With the introduction of traffic jam assistance, the boundaries between driver assistance sys-
tems and automated driving became more vague. Although the driver can take his/her hands of
the steering wheel and let the vehicle drive on its own, he/she still has to monitor the behaviour
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Level Name Narrative definition Vehicle
control

Monitoring Fallback SAE
level

0 Driver
Only

The human driver performs full-
time both lateral and longitudinal
control of the vehicle.

human
driver

human
driver

human
driver

No
Automation

1 Assisted The system performs either lateral
or longitudinal control of the ve-
hicle while the human driver is in
control of the other aspects of the
driving task.

human
driver
and

system

human
driver

human
driver

Driver
Assistance

2 Partially
Automated

The system performs lateral and
longitudinal control of the vehicle,
while the human driver must mon-
itor the system and environment
and must intervene when the sys-
tem’s capability limits are reached.

system human
driver

human
driver

Partial
Automation

3 Highly
Automated

The system performs all aspects of
driving and detects when it reaches
the limits of its capabilities such
that the human driver is given
enough time to intervene.

system system human
driver

Conditional
Automation

4 Fully
Automated

The system performs all aspects
of driving and brings itself to a
safe state when it detects that the
limits of its capabilities will be
reached.

system system system High and
Full

Automation

Table 1.1: A summary of the automation levels as defined by BaSt [GAA+12]. The “Monitoring” column
describes whether the human driver or the system itself monitors the environment and behaviour of the
system. The “Fallback” column indicates whether the human driver or the system takes control of the
vehicle when the limits of the system’s capabilities are reached. The corresponding names according to
the SAE definitions [SAE14] are also listed.

of the system. In order to eliminate confusion and to improve understanding across multiple disci-
plines (e.g. engineering, legal, media and public discourse), the German Federal Highway Research
Institute (abbreviated as BaSt) and SAE International (Society of Automotive Engineers) defined
different levels of automation [GAA+12, SAE14]. Both the BaSt and SAE taxonomies are sum-
marized in table 1.1. Note the difference in naming for the automation levels between those two
taxonomies. This thesis follows the classification and terminology defined by BaSt. Furthermore,
in this work the popular terms “autonomous vehicle” or “self-driving vehicle” are avoided.

The current state of the art allows us to build partially automated vehicles where the human
driver still has to monitor the system and must be prepared to take over control of the vehicle.
The next step will be the development of highly automated driving where the human driver no
longer has to monitor the system and will be given sufficient time to take over the vehicle once the
system detects the limits of its capabilities. While this may sound like a minor difference, the step
from partial automation to high automation requires an enormous increase in robustness of the
perception system. This is one of the challenges researchers within the field of automated driving
are currently faced with.

The first highly automated driving systems will only be able to drive in relatively simple
environments and scenarios, such as highway traffic jams. A research challenge is to improve
environment perception in a such way that it can handle more complex environments and situations
with the ultimate goal of perceiving the highly dynamic and diverse urban environments.
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1.2 Motivation

Since the beginning of this decade there have been a number of demonstrations of research vehicles
that drove automated in real traffic:

� In 2010, as part of a project called “Stadtpilot” [WSM10] (German for “city pilot”) of the
Braunschweig University, research vehicle Leonie drove automated on a 2.5 km long part of
the inner ring road around the Braunschweig (Germany) city centre [SWLM11]. On this
two-lane road the vehicle was able to make lane changes, merge into moving traffic, and
performed manoeuvres at signalized intersections that did not require consideration of right
of way.

� In July 2013, research company VisLab demonstrated their vehicle BRAiVE [BCD+15].
During this demonstration in Parma (Italy), BRAiVE drove automated on highways and
urban roads. Besides simple driving manoeuvres, the vehicle had to cope with roundabouts,
junctions, crosswalks and traffic lights.

� In August 2013 Daimler’s research vehicle Bertha [ZBS+14] drove automated from Mannheim
to Pforzheim (Germany). The course had a total length of 103 km, included rural roads and
passed through 23 small villages and major cities. The vehicle demonstrated its abilities to
handle intersections with and without traffic lights, roundabouts, and narrow passages with
oncoming traffic.

� In July 2014 Ulm University demonstrated their automated vehicle by letting it drive along a
5 km route in an urban environment [KNW+15]. The route included the universities’ campus
and contained traffic lights, crosswalks, intersections, roundabouts and a lot of pedestrians
and other vulnerable road users.

� In 2015 BMW Group Research and Technology published a paper [ARB+15] about their
experience of testing automated vehicles on German highways since they started working
on this in 2011. They developed a prototype vehicle that is able to drive automated on
highways up to 130 km/h, can perform lane changes and can merge into moving traffic when
entering the highway via a ramp.

� One of the most publicly noticed projects is Google’s Self-Driving Car Project that started
in 2009. At the time of writing, Google has a fleet of 58 automated vehicles which have
driven in total around 3.4 million testing kilometres in “autonomous mode” (2.1 million
kilometres were driven in “manual mode”) in various scenarios on the streets of Mountain
View (California), Kirkland (Washington), Phoenix (Arizona) and Austin (Texas) [Goo16a].
Unfortunately, there are no scientific publications about the methods that are used in this
project and therefore it will not be a part of the discussion of related work in this thesis.

Although the ultimate goal of the automated driving research area is to develop a fully au-
tomated car, none of the vehicles developed thus far can be classified as a fully or even highly
automated vehicle. Each of the vehicles still requires a safety driver to monitor the behaviour of
the vehicle to guarantee safe operation. This is because the environment perception methods are
not robust enough to ensure all relevant elements of the environment are correctly perceived, and
because the systems are not capable yet of recognizing their own driving limits early enough to
inform the driver to take over control or to automatically bring the vehicle in a safe state.

All of the vehicles listed above, one more than the other, rely on a priori digital maps for
perception of the environment. A digital map may be used as a redundant source of information
to improve the robustness of a sensor-based perception system. However, the main reason thus
far for using a digital map is to obtain information about certain elements of the environment for
which no sensor-based perception methods exist yet. The inherent problem is that the contents
of a digital map may be outdated or otherwise erroneous. If such outdated data are used by the
vehicle, then it will have an erroneous perception of the environment, that may result in dangerous
behaviour.
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Current state-of-the-art sensor-based perception methods will probably be sufficiently robust
for the first highly automated driving systems that are to be introduced in production vehicles,
since these first systems will be restricted to operate in simple environments. However, much
research has to be done in order to perceive more elements (e.g. intersections) in complex envi-
ronments based on sensors. Therefore, if digital maps can be safely used by an automated vehicle
for the perception of certain environment elements, then this will accelerate the introduction of
highly automated driving, in more complex environments, to production vehicles.

The importance of digital maps is also recognized by the automotive industry. A striking
example of this is the joint acquisition of digital map company Here (formerly known as Nokia
Here, of which the origins lie in Navteq) by car manufacturers Audi AG, BMW Group and Daimler
AG in 2015: the importance of digital maps for automated driving was one of the main motivations
for this acquisition.

With the aim of contributing to an early introduction of highly automated driving in urban
environments, this thesis addresses the following topics:

� Improving the capabilities of sensor-based environment perception in urban environments
using close-to-market sensors.

� Combining sensor-based perception with data from an a priori digital map in order to per-
ceive all relevant elements of the environment.

� Robust use of not fully reliable a priori digital map data for environment perception.

These topics are treated within the context of roundabout perception. Roundabouts can be
considered a special type of intersection mainly used in urban environments. Compared to regular
intersections, roundabouts are known to increase the traffic flow and decrease the number of
accidents [BSU09]. This is because at roundabouts the number of points where vehicle trajectories
can cross or merge, is much less than for regular intersections (single-lane roundabouts even have
zero points where trajectories can cross), the vehicles on the circulatory roadway all drive in the
same direction and the right-of-way rules at a roundabout are simple. Furthermore, roundabouts
offer better visibility between the traffic participants and the structure of a roundabout is easier
to understand than that of a regular intersection. Not only do these properties of a roundabout
lead to fewer accidents, but they also indicate that environment perception for automated driving
may be simpler at a roundabout than at a regular intersection. Therefore, roundabouts have the
potential for allowing highly automated driving earlier than regular intersections. This can be of
high importance, since cities wanting to promote highly automated driving in its early stages, could
consider this when planning their infrastructure. Since main roads in cities (e.g. ring roads) are the
least complex urban environments, an early introduction of urban highly automated driving may
be realized by creating a main road network where the roads are connected through roundabouts.

Considering the above arguments on roundabouts, it may not come as a surprise that, within
the research field of automated driving, roundabouts have already received some attention. In
2011 Pérez Rastelli et al. [PRMdPV11] published a paper on vehicle path planning in roundabouts.
Muffert et al. [MPF13] presented an approach that tracks other vehicles on a roundabout, makes
a prediction about them and finally decides whether it is safe to enter the roundabout. Also the
work by Gritschneder et al. [GHT+16] and Okumura et al. [OJK+16] focuses on decision making at
roundabouts. Dickmann et al. [DKH+15] discuss future requirements on automotive radar sensors
for perception of other vehicles at roundabouts. Furthermore, the automated vehicles Bertha
[ZBS+14], BRAiVE [BCD+15] and the Ulm vehicle [KNW+15] were able to cope with roundabouts
on their route. However, for the perception of the roundabout itself, all of these approaches rely
solely on a detailed digital map that is assumed to be correct. Therefore, roundabout perception
can be identified as a research gap that is relevant for automated driving.
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1.3 Related Work

1.3.1 Infrastructure Perception and the Use of Digital Map Data

Road perception has been a research topic since the first automated driving projects. For example,
in the late 1980s Dickmanns et al. [DMC90] demonstrated their camera-based road perception
method in an automated vehicle. Their vehicle was able to drive automated on highways and
could perform lane keeping and lane change manoeuvres. The method was able to perceive the
geometry of the ego lane (i.e. the lane in which the own vehicle is driving) and neighbouring lanes.
Since then, much effort has been spent on making lane perception algorithms more robust. As
a result, they formed the basis of the perception systems for lane keeping assistance that can be
found in production vehicles today [FPR+13].

A good description of the state of the art of road and lane perception is the survey by Hillel et
al. [HLLR12]. One important observation they make, is that most research on sensor-based road
perception has been done for relatively simple road structures. Most of the work is limited to the
perception of the ego lane and neighbouring lanes on highway-like road geometries with very little
curvature. Higher complexity in roads can occur in the form of complex lane geometries, splitting
or merging of lanes and intersections. This makes it more challenging for a system to perceive
the geometry of the lanes and understand the structure and topology of the road. As Hillel et
al. [HLLR12] state, vehicles that demonstrated automated driving on complex roads relied on the
use of a priori digital map data for the perception of the road. Consequently, they identified the
sensor-based perception of complex roads as a main research gap.

With the demonstration of the BRAiVE vehicle, Broggi et al. [BCD+15] claim that the “test
demonstrates that it is not necessary to use precise 3D maps: world reconstruction, including both
road features and road users, can be performed during the driving”. However, the validity of this
claim is highly questionable since they do not explain how their vehicle perceived the intersections
and roundabouts that were on its route.

The research vehicles for urban environments, Leonie [WSM10], Bertha [FPR+13], the Ulm car
[KNW+15] and Google’s Self-Driving Car [Goo16b] are known to use an a priori digital map for the
“perception” of the road. Bertha and the Ulm car both detect road markings in camera images,
but instead of using these features for road recognition, the features are used for localization in
the digital map. Even on the highway, where road perception is considerably easier than in urban
environments, the BMW vehicle [ARB+15] relied on a priori digital maps for the perception of
the road.

Based on experience with the BMW vehicle, Aeberhard et al. [ARB+15] recognize that out-
dated digital maps form a serious problem for their system. They state that, in the future, an
automated driving system must be able to detect that a map is not valid anymore and that their
current research is focussed on this topic (no results were published to date).

To date, automatic map verification has been a topic of interest mainly for map makers with
the goal of detecting whether a map is outdated. Internet connectivity of navigation devices allow
navigation map makers to detect map errors, caused by changes in the road network, by processing
GNSS (global navigation satellite system) trajectories of a fleet of vehicles (see for example the
method presented by Ekpenyong et al. [EPBB09]). Unfortunately, since these methods rely on
trajectories of many vehicles, which can also be outdated, they are not suitable for automated
vehicles to verify the correctness of the map’s current state.

Zinoune [ZBIG12b, Zin14] presented a method in which a vehicle verifies the correctness of a
digital map based on its own GNSS trajectory. This method detects errors in the map, but this
can only be done after the vehicle passed the part of the map that was incorrect. This makes
the method not suitable for the verification of map data before the system uses the map data.
Furthermore it only allows a verification of the centre line of the road, whereas an automated
vehicle requires a much more detailed geometric description of the road.

A method to detect errors in the map before the vehicle has reached an erroneous location in
the map, was proposed by Hartmann et al. [HGS+14]. They defined the map verification problem
as a classification problem for which they trained a neural network that outputs a probability that
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the map contains an error. Their digital map is a traditional navigation map where the road’s
geometry is described by its centreline. As a ground truth centreline they recorded the vehicle’s
trajectory with DGPS (differential GPS). For each time instant in the training data, the map was
labelled as incorrect if and only if within a 100 m range ahead of the vehicle the Hausdorff distance
between the ground truth centreline and the map centreline exceeded a maximum value. Using
these labels, the neural network was trained to classify the correctness of the map based on sensor
data from a near infra-red camera, radars and the output of an optical lane recognition system.
One disadvantage of the presented method is that it can only recognize that the map contains an
error somewhere between 0 m and 100 m ahead of the vehicle. It cannot identify the exact location
of the error. Another drawback of the method is its low flexibility: the neural network is trained
for a specific combination of the map’s uncertainty (which is expressed as the maximum Hausdorff
distance in order to classify the map as correct), lookahead (100 m in the presented paper), sensor
set and individual sensor characteristics. Although the authors motivate their work by the fact
that automated vehicles require detailed digital maps and that for those vehicles unnoticed errors
may lead to dangerous situations, the method they presented is designed for the verification of
traditional centreline maps. However, highly automated vehicles require a much more detailed
geometric description of the road.

To the best of my knowledge, there are no scientific publications on onboard map verification
for automated vehicles to date. Therefore this can be considered a research gap that has been
recognized [ARB+15, HGS+14] to be significant.

1.3.2 Roundabout Perception and Circle Detection

Sensor-based perception of roundabouts for automated driving has not been a topic of scientific
research thus far. In this section we provide an overview of literature related to roundabout
detection for other kinds of applications and literature related to circular shape detection.

A number of approaches [ZBIG12a, FCR09] exist that detect missing roundabouts in a digital
map, based on the trajectory driven by a vehicle. Because these methods are purely based on the
driven trajectory, no precise geometry of the roundabout elements can be derived. Furthermore,
these methods can only detect a roundabout after the vehicle passed through it and thus it cannot
detect a roundabout the vehicle is approaching.

In the field of image processing the Hough transform is a well-known method for detecting
circles in rasterized images. The original idea of the Hough Transform was described and patented
by Hough and Paul [HP62] for detection and extraction of straight lines in rasterized images.
Duda and Hart [DH72] generalized this method to detect curves and explained how it could
be used to detect and extract circles. The main idea behind the circular Hough transform is
to evaluate for each of the possible values of the circle parameters (i.e. centre and radius) how
many data points from the input support these parameter values. For cartographic purposes,
image-processing methods have been developed to recognize roundabouts in aerial images using
the Hough transform [MFZ09, BVC00]. The Hough transform is known to be a very expensive
algorithm in terms of computation time and memory usage. The Hough transform performance
for offline processing of aerial images is acceptable, but this is not the case for a system that should
process the data online in real-time and where the circle parameter space is big.

A different approach to detect roundabouts in aerial images was presented by Ravanbakhsh
and Fraser [RF09]. Their algorithm requires the complete central island circle to be visible in the
image, whereas on-board vehicle sensors can only observe an arc of the circle. This makes their
approach unsuitable for our application.

Núñez et al. [NVMdT+06] presented a method to segment a laser scan into line and curve seg-
ments. However they do not specify what a “curve” segment means. From the provided examples
and the description of how the algorithm works, the reader could conclude that a curve segment
is a segment for which the curvature is constant (i.e. the segment is a circle). Unfortunately, it is
not clear from the description of the method how these curve segments are found.

Xavier et al. [XPC+05] also present an approach to detect circles in laser scans. The method
splits a laser scan, which consists of a sequence of measured locations, into segments at each
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point where the distance between two neighbouring points is above a certain threshold. In those
laser scan segments the algorithm then detects line segments. Then for all remaining laser scan
segments they verify whether the segment is a circle segment or not. This approach will not work
for our application mainly for two reasons. The first reason is that in some cases the laser scan
will not make a big jump in distance when going from the ground surface to the curb. The second
reason is that the part of the laser scan on the ground is not in general a straight line. This means
that the part of the laser scan hitting the roundabout’s curb might be in the same final laser scan
segment as some parts hitting the ground and therefore the former will not be identified as a circle.

1.3.3 Map-Relative Localization

In order to use a priori digital map data, the ego vehicle has to be localized relative to the data
in the digital map. If the map data is geo-referenced then this localization can be achieved by
measuring the global position of the ego vehicle with a GNSS like GPS. The disadvantage of a
GNSS is that a connection with a sufficient number of satellites is not always available and that
the localization accuracy is not acceptable for highly automated vehicles. Combining GPS with
correction data, like with Differential GPS, may solve the accuracy issue but it does not solve the
availability issue.

To improve localization accuracy without relying on the availability of a GNSS, methods have
been developed to localize the vehicle by matching sensor observations with geo-referenced data
stored in an a priori digital map. One family of these methods uses an a priori map that contains
a high resolution 2D grid where each grid cell stores information about the corresponding location
on the ground plane. For example the method by Levison et al. [LMT07] uses an a priori grid map,
with a 5 cm cell resolution, of the ground reflectivity in the infrared spectrum. For localization of
the ego vehicle, a particle filter correlates infrared LIDAR measurements with this map. Although
this group of methods achieves good localization results, their main disadvantage is the enormous
storage space required by the high resolution a priori grid maps. A second family of localization
methods uses, instead of an a priori grid map, an a priori map with landmarks. The map contains
for each landmark its location and a description that helps the system to recognize it. Landmarks
can be for example posts or walls of houses as in the approach presented by Weiss et al. [WKD05]
or points on the surface of an object with a distinguishable curvature characteristic as in the
approach of Madavan and Durrant-Whyte [MDW04]. For localization the ego vehicle will extract
landmarks from raw sensor data and match these with the landmarks in the a priori map to
estimate the position of the ego vehicle.

In many applications localization is performed because the system has to know its position
relative to objects described in the a priori map. For both of the above explained families of
sensor-based localization methods, a fraction of the data stored in the a priori map will only be
used for localization and is of no further interest for the rest of the system. That means that the
a priori map contains two kinds of data: data for localization (e.g. landmarks) and data about
the objects the system is actually interested in (e.g. elements of the infrastructure). A drawback
of this is that a map containing both kinds of data needs to be maintained. This does not only
imply that more information needs to be stored, but also that the map becomes useless (or less
trustworthy) if the localization data is outdated even when the object data is still up-to-date.

In the method proposed by Nedevschi et al. [NPM+10] the a priori map does not contain
additional localization data but only the object data the automated vehicle is interested in. This
object data is used to localize the ego vehicle relative to the object. The goal of their system is
to perceive a detailed description of a road intersection. They have extended a navigation map
with a detailed intersection description that includes the stop lines and for each entry lane the
boundaries and the turn-direction of the lane. When the ego vehicle is approaching an intersection,
their system detects the boundary of the entry lane and the position of the stop line using a stereo
camera. The algorithm also derives the turn-direction of the ego lane from detected arrows in
the camera image. The system aligns these observations with the detailed intersection description
stored in the a priori map in order to have a complete intersection geometry described relative to
the ego vehicle.
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For localization on roads with a simple geometry (i.e. low curvatures and no intersections),
methods like the one proposed by Chausse et al. [CLC05], localize the vehicle relative to a digital
map where the boundaries of lanes are used as landmarks. Based on camera data, the presented
method computes the lane width, the road’s lateral curvature, the vehicle’s distance to the left side
of the lane and the vehicle’s heading angle relative to the lane. These values are used to update the
estimation of the vehicle’s location on the map. Because of the relatively great ambiguity of lane
boundary observations for low curvature roads, methods like these are known to have a greater
position uncertainty along the longitudinal direction of the road compared to the uncertainty in
the lateral direction. Furthermore if the system only recognizes the ego lane, then it is possible
that the system localizes itself in the wrong lane or at least has multiple ego lane hypotheses.
However, Rabe et al. [RNS16] showed that by incorporating radar measurements of other vehicles
and stationary objects, these approaches can be used to identifying on which of the lanes of a
multi-lane road the vehicle is driving. This makes their approach suitable for driver assistance
systems, like lane-level navigation. These method proved to be useful for localization when map
data is used to enhance the performance of camera-based lane keeping assistance systems [TPA07].
It seems that this group of methods is useful for driver assistance systems, but that, due to the
low accuracy in longitudinal direction, it is not suitable for localization in highly accurate and
detailed maps for automated vehicles.

In order to improve the accuracy of localization methods based on lane markings, Mattern
et al. [MSW10] and Schreiber et al. [SKF13] proposed approaches that rely on a more detailed
map. Instead of having a map only representing the geometry of lane boundary, their approaches
use a map where the geometry of each individual road marking is described. That is, when a
lane boundary is a dash road marking, then the geometry of each individual dash is described.
Furthermore markings at intersections or symbols (e.g. arrows) painted on the road are also rep-
resented. Obviously, the mapping efforts and required storage space for the map are higher, but
these localization methods proved to result in a high localization accuracy.

1.4 Research Objectives

As can be concluded from the previous sections, much research still has to be done on robust
environment perception in order to realize highly automated driving in urban environments. The
rather limited capabilities of the current state-of-the-art sensor-based environment perception for
urban environments, motivates the first objective of this thesis:

Research objective 1. Improve the capabilities of sensor-based perception in urban environ-
ments using close-to-market sensors.

However, it is unrealistic to assume that in the near future all elements in the environment,
relevant for highly automated driving, will be perceived based on only sensor data. Instead,
detailed digital maps will play an important role for the perception of those elements for which no
robust sensor-based methods are available yet. Thus, a near-future perception system for highly
automated driving must be able to combine sensor-based perception with data from digital maps.
This requirement leads to the following objective:

Research objective 2. Develop methods to combine sensor-based perception with data from an
a priori map in order to perceive all relevant environment elements.

Unfortunately, all automated vehicles demonstrated thus far assume the contents of a digital map
to be correct. This may be acceptable for a partially automated system where a human driver
has to monitor the system, but not for a highly automated vehicle. Since this problem has been
rarely a topic of scientific research, although it is considered to be very significant, it forms the
third objective:

Research objective 3. Formulate and investigate the problem of verifying the correctness of a
priori map data before the vehicle acts on it.
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The three research objectives described above are too broad to investigate in their full generality
within a single thesis. Therefore these objectives are studied in a specific context, namely the
perception of roundabouts. Despite the importance of roundabouts for an early introduction of
urban highly automated driving (see section 1.2), the perception of roundabouts has not been
studied thus far by the automated driving research community. Hence, the study of roundabouts
not only serves as a test bed for research objectives 1–3, it is also interesting in its own right.

Research objective 4. Develop methods for the perception of roundabouts.

1.5 Main Contributions and Outline of the Thesis

The following list summarizes the main contributions of this thesis and relates them to the research
objectives that were defined in the previous section:

� The introduction of a road representation that allows the representation of multiple road
hypotheses in order to cope with ambiguities and uncertainties in the road’s perception.
(contributes to research objective 1)

� The first results on on-board sensor-based roundabout perception in the form of a roundabout-
central-island detector based on laser scanner measurements. (contributes to research ob-
jectives 1 and 4)

� The presentation of a roundabout perception approach that combines partial sensor-based
observations of the roundabout with a detailed digital map of the roundabout. This approach
can also be considered as a novel way for localization relative to a digital map without
requiring additional landmarks. (contributes to research objectives 2 and 4)

� A formulation of the requirements for robust use of a priori digital map data for environment
perception. (contributes to research objective 3)

� Identification of difficulties and challenges that may arise when digital map verification is
formulated as a probabilistic problem. (contributes to research objective 3)

Chapter 2 provides background knowledge, conventions and definitions that are required for a
good understanding of the contents of this thesis.

On urban roads the great variety of road and lane boundaries, bad quality road markings,
missing road markings, occlusions and patched roads are some of the reasons that can make
the structure of the road ambiguous for a road perception system. This is one of the problems
that arises if we want to replace the fully-map-based perception of urban roads by sensor-based
perception. This problem is addressed in chapter 3 where a multi-hypothesis road representation
is presented. Instead of letting the perception system choose the most likely hypothesis about the
road and send this hypothesis to the behaviour planning system, the idea behind the presented
representation is to send the set of all plausible road hypotheses. Besides presenting the multi-
hypothesis road representation, chapter 3 further motivates the use of it.

Chapter 4 presents a method for detecting central islands of roundabouts using a close-to-
market laser scanner. An extensive evaluation is done where not only the detection rate is evalu-
ated, but also the quality of the input data, the error distributions of the detected central islands,
and causes of missed detections. Some of the resulting evaluation data, describing the character-
istics of the detection method, are used in the following chapters that present methods utilizing
the detector.

In chapter 5 a method is presented for the perception of all relevant elements of a roundabout.
The output of the central-island detector and a road marking detector are fused with a detailed
a priori digital map (which for the purpose of this chapter we assume to be correct) to achieve a
complete perception of the roundabout. The method localizes itself relative to this digital map
without the need of a precise GNSS or additional landmarks in the map.
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Verifying the correctness of a digital map, before the automated vehicle acts on it, is the topic
of chapter 6. First, possible requirements on map verification for highly automated driving are
discussed. Then the map verification problem is formally specified in a probabilistic way. This
specification is followed by a proposal for a generic map verification model, and a description of
how it can be applied to verify the correctness of the map of a roundabout’s central island. The
presented verification model is analysed based on this application.

Final conclusions and recommendations for future research are presented in chapter 7.
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Chapter 2

Conventions, Definitions and
Background Knowledge

2.1 The Environment Coordinate System

Each sensor measures some quantity in its own coordinate system. Since the perception system
must perceive the environment based on different sensors, it must have a common coordinate
system in which all information about the environment can be represented. Furthermore, the
output of the perception system should be in a coordinate system that is convenient for behaviour
planning, which is most likely not the same coordinate system as an arbitrary sensor coordinate
system. In this thesis, the perception system therefore represents the environment in a so-called
environment coordinate system, both for internal representation and output. The environment
coordinate system (see also figure 2.1) is defined to be the coordinate system fixed to the vehicle
that

� is a right-handed orthogonal coordinate system,

� has the local ground plane on which the vehicle is standing as the xy-plane,

� has the orthogonal projection of the vehicle rear axle’s centre as its origin,

� has an x-axis in the same direction as the orthogonal projection of the vehicle’s forward-
pointing longitudinal axis on the xy-plane,

� and has an upward pointing z-axis.

When in this thesis we talk about coordinates or axes (i.e. x, y or z) without explicitly mentioning
their coordinate system, then these are coordinates or axes in the environment coordinate system.
When we say that a location or geometry is described relative to the ego vehicle, then we mean
that the location or geometry is described in the environment coordinate system.

y

xz

Figure 2.1: The environment coordinate system seen from above the ego vehicle
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Figure 2.2: (a) A roundabout and its elements; the blue lines are painted road markings. (b) A visualization
of the perception model of this roundabout.

2.2 The Roundabout Model

The research objectives of this thesis are mainly applied to roundabout perception. This section
describes all relevant elements and terminology concerning roundabouts and presents a model
that is used for the output of an environment perception system to describe a perceived round-
about. Figure 2.2(a) is used to clarify the structural elements of a roundabout, while figure 2.2(b)
illustrates the proposed roundabout model.

Based on German road construction guidelines [For12] we identify those elements of a round-
about (see figure 2.2(a)) that are relevant for the task of driving highly automated through it. The
central island is in the centre of the roundabout. Crossing it is prohibited and is made impossible
and/or discouraged because it has a road curb. In most cases the island itself is elevated from
the road. The truck apron is a ring around the central island and may only be crossed by long
vehicles like trucks or buses. The truck apron is an optional element. The circulatory roadway is
the ring-shaped part of the roundabout on which the vehicle should drive. At those parts where
roads are connected to the roundabout, the outer border of the roundabout is marked by a road
marking (see the dashed road markings in figure 2.2(a)). If a road connected to the roundabout
has an entry lane and an exit lane, then those lanes are separated by a splitter island .

In this thesis, only single-lane roundabouts are considered, since this is the most common type
of roundabout and it is preferred over a multi-lane roundabout in road-design [BSU09, FHW10].
The presented perception methods may work for large multi-lane roundabouts (with an adapted
roundabout model), but these roundabouts are out of the scope of this thesis. Furthermore, there
are non-circular roundabouts, or small roundabouts where the central island does not have a curb.
Also these kinds of roundabouts are out of the scope of this thesis.

Now that we have identified the relevant elements of a roundabout, we describe a model for
representing a roundabout (illustrated by figure 2.2(b)). Because the central island, truck apron
and circulatory roadway are concentric circles, they have a common centre that is described by
position c in the roundabout model. The geometric description of central island, truck apron and
circulatory roadway is completed by describing their radii rc, rt and ro respectively. Since the
truck apron is an optional element, the model contains an indicator which tells us whether or not
a truck apron is present. So-called gates model the parts where entry and exit lanes are connected
to the roundabout (see g0, . . . , g7 in figure 2.2). Each gate is geometrically described by its two
end points on the roundabout’s outer border (i.e. the circle with radius ro). The gates are grouped
according the roads (see R0, . . . , R3 in figure 2.2) to which they belong.

Although road construction guidelines specify requirements on the roads connected to a round-
about, a description of these roads (including their splitter islands) is not part of the presented
roundabout model. The reason for this is that, in this thesis, the perception of these roads are
not considered to be part of the roundabout perception problem.
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2.3 Laser Scanner

2.3.1 Laser Scanner Principles

The detection of roundabout central islands as presented in this thesis is based on measurements
by a laser scanner. A laser scanner is a device that is able to make three-dimensional position
measurements based on the time-of-flight principle. The device emits short laser pulses that are
reflected by an object. In case of diffuse reflection of the laser pulse, the reflected light reaches
the device and is detected by a photodetector. Based on the time difference between emission and
detection, the distance to the point where the pulse was reflected by the object can be computed.
Using a mirror, the laser beam can be deflected in a specific direction. The combination of the
known angle in which the beam is deflected and the measured distance, allows us to compute
the three-dimensional position of the point where the pulse was reflected by the object. By
continuously rotating the mirror (or the emitter-detector unit itself) around a single axis, the
device can scan a whole range of angles around the rotation axis. The measurements collected
during one rotation are called a laser scan. The angle between a laser beam and the rotation axis is
fixed. Scanning the environment in different directions simultaneously can be achieved by emitting
multiple laser beams with different angles relative to the rotation axis. The emitter-detector unit
for each of these beams is referred to as a layer of the laser scanner.

Usually a laser scanner is mounted in such way that the axis of rotation is orthogonal (or almost
orthogonal) to the ground plane. Therefore, the field of view and angular resolution around the axis
of rotation are called the horizontal field of view and horizontal resolution respectively. Because
in such case the layers of laser scanner are “stacked” on top of each other, the field of view and
angular resolution in the direction where the directions of the layers vary are called the vertical
field of view and vertical resolution respectively.

There are laser scanners with a large number of scan layers and thereby a high vertical res-
olution and large vertical field of view. For example, the winning car of the DARPA Urban
Challenge used a laser scanner with 64 layers [UAB+08]. Because of the price and the dimensions
this kind of laser scanner to date, they are far from being a component that can be integrated
in mass-production vehicles. Laser scanners with only a few layers are soon to be introduced in
production vehicles [Sch15].

2.3.2 Specifications of Used Laser Scanner

The experiments presented in this thesis were done with such a close-to-production laser scanner
with 6 scan layers. This device is very similar to the laser scanner evaluated by Zeisler and Maas
[ZM15]. The laser scanner is constructed in such way that layers 0–2 scan simultaneously and
layers 3–5 scan simultaneously. During one cycle of the laser scanner, first layers 0–2 perform a
scan followed by layers 3–5. Layers 1 and 3 have the same direction and layers 2 and 4 have the
same direction, as illustrated in figure 2.3. The vertical angular resolution is 0.80° and the vertical
field of view is 3.20°. The laser scanner has a horizontal resolution of 0.25° and a horizontal
field of view of 145°, meaning that a single layer scan consists of 581 distance measurements.
The horizontal and vertical divergence of the laser beams are 0.10° and 0.80° respectively. The
distance resolution is 0.04 m and the distance measurement error is less than 0.1 m. The maximum
measurable distance is more than 100 m. Laser scans are produced with a frequency of 25 Hz. By
this we mean that a scan of layers 0–2 takes 40 ms, a scan of layers 3–5 takes 40 ms and that a
complete laser scan cycle, which comprises the scans of layers 0–5, takes 80 ms.

The laser scanner is built into the centre of the vehicle’s front grille, as illustrated in figure 2.3.
The sensor’s origin is 3.82 m in front of the vehicle’s rear axis and is approximately 0.3 m above
the ground. It is tilted in such way that on a flat road the lowest layer (layer 0) measures a point
at the road at approximately 12 m in front of the laser scanner along the x-axis.
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Figure 2.3: An illustration of how the different scan layers of the used laser scanner are positioned relative
to each other. For illustrative reasons, the proportions in this figure do not agree with reality.

2.4 Notation of Probabilistic Concepts

The reader of this thesis is assumed to have basic knowledge about probability theory which
includes being familiar with the concepts of random variables, (joint) probability distributions,
(joint) probability density distributions and statistical dependence. This thesis adopts a notation
for probabilities and probability densities that is regularly used within the field of robotics (e.g.
in the book by Thrun et al. [TBF05]). Since this notation is different from the notation taught in
a classical university course on probability theory, this section explains the notation.

Classical notation. We first consider the classical notation. Let X be a random variable and
let x be a realisation of X. Then the probability of the event that X takes value x is written as:

Pr(X = x)

Usually this probability is referred to as “the probability that X is x”. Let Y be another random
variable and y be a realisation of Y . Then the probability of the event where X takes value x and
Y takes value y is written as:

Pr(X = x, Y = y)

and the probability of the event where X takes value x, given that Y took value y, is written as:

Pr(X = x | Y = y)

Now if X is a continuous random variable then usually Pr(X = x) = 0 for x and speaking of
“the probability that X is x” is not of much use. Usually for a continuous random variable X,
symbol FX is used to denote the cumulative distribution function of X:

FX(x) = Pr(X ≤ x)

If Y is another continuous random variable, then symbol FX,Y is to denote the joint cumulative
probability function of X and Y :

FX,Y (x, y) = Pr(X ≤ x, Y ≤ x)

The joint cumulative probability density function of X given Y (which can be discrete or contin-
uous) is denoted by symbol FX|Y :

FX|Y (x, y) = Pr(X ≤ x | Y = y)

Instead of probability values, we make use of probability density values for continuous random
variables. Usually for a continuous random variable X, symbol fX is used to denote the probability
density function of X:

fX(x) =
dFX(x)

dx
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In case of two continuous random variables (this example extends in a similar way to more con-
tinuous random variables) X and Y , symbol fX,Y is used to denote the joint probability density
function of X and Y :

fX,Y (x, y) =
∂2FX,Y (x, y)

∂x∂y

The conditional probability density function of a continuous random variable X, given a random
variable Y (which can be discrete or continuous), is usually denoted using symbol fX|Y :

fX|Y (x, y) =
dFX|Y (x, y)

dx

Notation in this thesis. Now for a random variable X we use the following notation to express
its probability or probability density for value x:

p(X = x)

That is, if X is a discrete random variable, then:

p(X = x) = Pr(X = x)

If X is a continuous random variable, then:

p(X = x) = fX(x)

If two random variables X and Y are both discrete, then P (X = x, Y = y) means:

p(X = x, Y = y) = Pr(X = x, Y = y)

Similarly, if two random variables X and Y are both continuous, then P (X = x, Y = y) means:

p(X = x, Y = y) = fX,Y (x, y)

If X is discrete then:
p(X = x | Y = y) = Pr(X = x | Y = y) (2.1)

If X is continuous then:
p(X = x | Y = y) = fX|Y (x, y) (2.2)

Note that in equations 2.1 and 2.2 Y can be discrete or continuous.
To improve readability, the “X =” part in the notation may be omitted in case the symbol

used for the realisation of the random variable is the lower-case variant of the symbol used for the
random variable. For example:

p(x) = p(X = x)

The notation that involves Pr is still used for writing the probability of a random event that
does not involve the equality of a random variable to a given value. For example, to express the
probability that random variable X takes a value between a and b, we write

Pr(a < X < b),

or if we want to express the probability that random variable X takes a value from a set A, we
write

Pr(X ∈ A).

Random variables introduced in this thesis are continuous unless stated otherwise.
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Chapter 3

A Multi-Hypothesis Road
Representation

Whereas the rest of this thesis treats the research objectives within the context of roundabout
perception, this chapter focusses on the perception of roadways. Here a roadway is defined to
be the portion of a road in-between junctions, that consists of at least one lane and is in the
lateral direction bounded by a shoulder line (edge of the pavement), a curb line, a guard rail
or a barrier. Traffic islands are considered to be part of a roadway. This chapter presents a
road representation that, in the presence of perception uncertainties, allows multiple hypotheses
about a roadway. The reason for the chapter’s focus on roadways only, is that purely-sensor-based
perception, which might require such a multi-hypothesis representation, will most likely be possible
for roadways before it is possible for junctions. The development of the representation was part
of the PhD research projects of Frank Dierkes, Max Theo Schmidt and the research presented by
this thesis. The concept was first presented in a joint publication in 2015 [DRS+15].

3.1 Motivation

In order to drive highly automated, a system must be aware of all relevant elements in its envi-
ronment. Understanding the roadway is an important part of this. By roadway understanding
we mean understanding what portions of the roads are considered to be lanes or other relevant
parts of the road (e.g. shoulders, splitter islands), and the relations between them. As already
mentioned in section 1.3.1, Hillel et al. [HLLR12] state that most of the work on sensor-based
road perception thus far has been done for relatively simple roads such as highways. For roads
that are more challenging to perceive, most systems used an a priori map. For the simpler roads,
there are sensor-based perception methods, but most of these existing methods are restricted to
the perception of the ego lane or ego lane plus neighbouring lanes. Therefore, Hillel et al. identify
full roadway understanding based on sensor data as a research gap.

Environment perception is and will always be subject to uncertainty. For the perception of
simple roadways, this uncertainty may only lie in the geometry of lane boundaries. However, when
we want to perceive more complex roadways, another kind of uncertainty will arise: uncertainty
about the structure of the roadway. That is, there is uncertainty about how many lanes (and
roadway parts of other kinds) there are, and about which of the detected road markings, curbs,
etcetera define a lane. This kind of uncertainty may be caused by imperfections of the perception
system that results in false positive or false negative detections of lane/road boundaries. However,
even with a perfect perception of these boundaries, uncertainty about the roadway’s structure can
persist. Uncertainty can be the result of ambiguity caused by the roadway itself, for example in
construction zones or by poorly removed old road markings. Bad visibility (e.g. caused by fog,
rain or sun glare) or occlusions can also cause uncertainty.
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Behaviour planning methods developed thus far only consider uncertainty about a lane’s geom-
etry or about the future behaviour of other road users (e.g. [UM13, BGD14]), if uncertainties are
considered at all. However, each of these methods is based on an unambiguous understanding of
the road. Such methods assume that solely the perception system copes with uncertainties about
the roadway structure as discussed above. Even though increasing robustness of the perception
capabilities of automated vehicles may significantly reduce the uncertainty about the roadway,
some uncertainty will remain. In general, requiring an unambiguous representation of the road-
way for behaviour planning, forces the perception system to make decisions that may affect the
behaviour of the vehicle in a crucial way.

If there are multiple plausible hypotheses about the roadway, then it may be beneficial or even
necessary for the behaviour planning to know all of them instead of just one. As an example,
consider the start of an off-ramp, which is easily falsely recognized as a widening lane (for instance
because at the start, the perception system has not accumulated enough evidence for lane marking
that separates both lanes). Instead of picking one hypothesis —the widening lane or the lane
bounded by a marking with little evidence— the perception system can present both hypotheses
to the behaviour planning system. The behaviour planning system might then decide to follow
the lane with the constant width, since it is also a portion of the widening lane.

The considerations above lead us to present a multi-hypothesis road representation. The goal
of our representation is to eliminate the requirement on the perception system to present a single
roadway hypothesis to the behaviour planning system. Consequently, with this representation
the behaviour planning system can consider all plausible (possibly conflicting) hypotheses. The
representation can represent multiple hypotheses about the roadway and is designed in such a way
that it is easy to infer where and how the hypotheses about the roadway differ and where they
are the same.

3.2 A Single-Hypothesis Roadway Model

Before presenting the multi-hypothesis road representation, this section discusses how we would
model a single hypothesis roadway in the absence of uncertainty. This is done for two reasons.
First, it clarifies which modelling concepts are introduced in order to model a roadway in gen-
eral (i.e. without ambiguity) and which concepts are introduced in order to model uncertainties.
Second, it allows us to introduce some terminology about the roadway that applies to both a
single-hypothesis representation and a multi-hypothesis representation.

A roadway consists of at least one lane. A lane is bounded in lateral direction by a left and
right boundary. However, a roadway does not only consist of lanes as can be seen in the lateral
cross section of a road in figure 3.1; there can be shoulders, traffic islands and bicycle lanes for
example. In a lateral cross section of the roadway, these parts too are bounded by a left and right
boundary. We generalize these kinds of parts (including lanes) by modelling them as strips. A
strip is a part of the roadway that is bounded in lateral direction by two boundaries. Boundaries
can appear in different forms: road markings (of different kinds), Botts’ dots, shoulder lines, curbs,
etcetera.

For an automated vehicle it is important to know which strips are next to each other, and
therefore a roadway model should describe these neighbour relations. These relationships are not
constant over the complete length of the roadway (see for example figure 3.2), which is the reason
for introducing the concept of roadway segments. In the longitudinal direction the roadway is
partitioned in roadway segments. Roadway segments begin and end at those locations where the
neighbour relations between strips change, as illustrated in figure 3.2. That is, within a roadway
segment the strip neighbour relations are constant. A roadway is modelled as a sequence of
roadway segments.

A strip segment and boundary segment are the portion within a roadway segment of a strip and
boundary, respectively. A roadway segment is modelled as a sequence of strip segments ordered
from one side of the road to the other side. The order of this sequence describes neighbour
relations (in lateral direction). A strip segment itself is described by its two boundary segments.
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Figure 3.1: The structure of a roadway in lateral direction illustrated by a cross-section of the roadway.
The roadway is composed of strips. A strip is defined by its lateral boundaries and its type. There are no
gaps between strips and no overlaps of strips. A road may have more than one roadway. Here, an example
of a rather rare cross-section of a road is pictured. It consists of (a) a side path, (b) a green strip, (c) a
shoulder, (d) painted lane markings, (e) travel lanes, (f) a barrier, (g) a guard rail, (h) a separating strip,
(i) a bicycle lane, (j) a gutter and (k) a footway.

segment A

segment B

stri
p 1

stri
p 2

stri
p 3

Figure 3.2: In this example roadway is divided into two roadway segments at the point where strip 3
starts. Strip segments 1A and 2A are connected longitudinally to strip segments 1B and 2B, respectively.
Strip segment 3B is only connected laterally to strip segment 2B.

Furthermore, the connections in longitudinal direction between consecutive strip segments are
described.

3.3 Multi-Hypothesis Representation

To explain the multi-hypothesis road representation in this section we make use of the example
in figure 3.3. As illustrated on the left side of figure 3.3, in this example there exists a road with
road markings that have been detected only partially by the perception system as well as false
road marking detections. Since the perception system cannot distinguish between true and false
detections of road markings, it generates multiple hypotheses about the roadway. Here we define a
roadway hypothesis as a hypothesis about the roadway over the complete represented longitudinal
range of the roadway. Such roadway hypotheses can be generated based on, for example, the
quality of the road marking detections, knowledge about road models based on road construction
guidelines, or a priori map knowledge. Since the criteria and methods for hypothesis generation
are not within the scope of this chapter, some possible hypotheses are presented without trying
to present a complete set of possible hypotheses. The main point of the example is to show how
multiple roadway hypotheses are represented in our representation.

The goal of the multi-hypothesis representation is to represent the set of different roadway
hypotheses, such that it is easily interpretable and is efficient in terms of memory usage. The
presented representation is easily interpretable in the sense that it is easy for the user to determine
where and how the roadway hypotheses differ. There may be some longitudinal ranges where
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Figure 3.3: Left side: Road markings as they appear in the real world are visualized by the black/grey
lines. The black part of these markings indicate the part that is observed by the perception system and are
considered as road marking candidates. The blue lines visualize further candidates for road markings that
were detected by the perception system. The red lines indicate the borders of the roadway subsegments
in the constructed road representation instance. Right side: For each of the roadway subsegments the
roadway subsegment hypotheses are visualized. The arrows indicate the longitudinal connections between
these road subsegment hypotheses. If two strip subsegment hypotheses of neighbouring subsegments have
the same colour, then that means that there exists a strip subsegment hypothesis connection between
them.

multiple roadway hypotheses are the same. The presented representation is memory efficient in
the sense that it describes a hypothesis about the roadway within each such longitudinal range
only once, instead of describing it multiple times for each roadway hypothesis separately. This
kind of memory efficiency and interpretability is achieved by partitioning the roadway into roadway
subsegments. A roadway subsegment is defined as a range in longitudinal direction of the road
with the following properties:

1. There are no two roadway hypotheses such that within the subsegment there is one position
in the longitudinal direction where the lateral structure of the roadway hypotheses differ and
another position where they are the same.

2. For each roadway hypothesis, the neighbour relations between strips are the same for each
longitudinal position within the subsegment.

3. The range is maximal. That is, there exists no other range in longitudinal direction that
includes the subsegment and satisfies properties 1 and 2.

Property 1 ensures the memory efficiency and interpretability requirement described above. Prop-
erty 2 ensures a convenient interpretation of strip neighbour relations just as roadway segments
do in the single-hypothesis case. Property 3 minimizes the number of roadway subsegments. As
a result of this definition of roadway subsegments, the roadway is split into subsegments at those
places where roadway hypotheses start or end to differ, or where there is at least one roadway
hypothesis for which the neighbour relations of its strips change.

The data structure of our multi-hypothesis representation is illustrated by an UML class dia-
gram in figure 3.4. Here a roadway is represented by the Roadway class and its partitioning into
roadway subsegments is represented by a list of RoadwaySubseg objects. Each roadway subseg-
ment has a set of roadway subsegment hypotheses (represented by class RoadwaySubsegHyp) that
each describe a hypothesis about the roadway within that roadway subsegment.

On the right side of figure 3.3 we see for each roadway subsegment in the example, the possible
roadway subsegment hypotheses. In roadway subsegment A there is an uncertainty about the left
border of the left lane because there are two possible candidates for this boundary. Therefore
there are two roadway subsegment hypotheses for A: hypothesis A0 and hypothesis A1. Within
roadway subsegment B, all roadway hypotheses are the same and thus there is only one hypothesis
B0. Because of this change in uncertainty about the roadway when going from subsegment A to
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Figure 3.4: UML class diagram of the multi-hypothesis representation. The persistent elements are
mandatory. The roadway (with its location line) and its subsegments are the topological skeleton for
the composition of roadway hypotheses. For each subsegment, roadway subsegment hypotheses can be
composed of contiguous strip subsegment hypotheses. In longitudinal direction, compatible roadway
subsegment hypotheses can be connected. A roadway subsegment hypotheses connection defines which
strip subsegment hypotheses of the corresponding roadway subsegment hypotheses are connected. A
strip subsegment hypothesis is defined by its boundary subsegment hypotheses. A boundary subsegment
hypothesis refers to a subsegment of the geometric description of a detected or virtual boundary. The
composable elements can be used to describe a single roadway hypothesis or a continuous lane hypothesis,
for example.

roadway subsegment A: roadway subsegment B:

A0 A1 B0
RoadwaySubsegHyps:

StripSubsegHyps:

BoundarySubsegHyps:

Figure 3.5: A visual representation of the associations between objects of the classes
RoadwaySubsegHyp, StripSubsegHyp, BoundarySubsegHyp, RoadwaySubsegHypConn (the green circles) and
StripSubsegHypConn (the blue circles), corresponding to the roadway subsegments A and B of the example
depicted by figure 3.3.
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B, property 1 enforces us to split up the roadway into subsegments A and B. Since the perception
system does not know whether the falsely detected marking on the right is correct or not, there
are two roadway subsegment hypotheses (C0 and C1) for roadway subsegment C. Apart from
property 1, a split up between subsegments B and C is also enforced by property 2 because
there are roadway hypotheses (namely all roadway hypotheses that contain roadway subsegment
hypothesis C1) that get a new lane in subsegment C. When we take a look at the hypothesis for
roadway subsegment D, we see that there is doubt about the borders of the second and third lane
and the existence of a third lane.

The part of a hypothesis about a strip within a certain roadway subsegment, is called a strip
subsegment hypothesis (represented by the class StripSubsegHyp). A RoadwaySubsegHyp object
contains an ordered list of references to those StripSubsegHyp objects that are part of the roadway
subsegment hypothesis. The order of this list encodes the neighbour relations between the strips:
two strips are neighbours if and only if they are neighbours in the list. The list is a list of references
since one StripSubsegHyp can belong to multiple hypotheses of the same roadway subsegment.
This makes it possible for the user to determine whether different roadway subsegment hypotheses
of the same roadway subsegment have strips in common. For example, for roadway subsegment
A there are three different strip subsegment hypotheses (see also figure 3.5); roadway subsegment
hypotheses A0 and A1 share the strip subsegment hypothesis for the blue coloured strip, but have
different hypotheses for the green coloured strip.

The class RoadwaySubsegHypConn models possible connections in longitudinal direction be-
tween two roadway subsegment hypotheses. Thus there exists a connection between two road
subsegment hypotheses if and only if they belong to consecutive subsegments and there exists
a roadway hypothesis that contains both road subsegment hypotheses. For example, there is a
connection between roadway subsegment hypotheses C0 and D2 because there exists a hypothesis
about the roadway that contains both of them. On the other hand there is no connection between
C0 and D3 since, for some reason, these hypotheses are incompatible with each other (this depends
on the method and criteria used to construct hypotheses which is outside the scope of this work).

Similar to connections between roadway subsegment hypotheses, connections in longitudinal
direction between strip subsegment hypotheses are modelled by the class StripSubsegHypConn.
There exists a connection between two strip subsegment hypotheses if and only if they are in
consecutive subsegments and there exists a roadway hypothesis in which both strip subsegment
hypotheses are part of the same strip. In order to find out how the strip subsegment hypotheses
of two given road subsegment hypotheses are connected, a list with references to the correspond-
ing StripSubsegHypConn objects is stored in the RoadwaySubsegHypConn. These references are
visualized in figure 3.5 by the lines between the green and blue circles.

A strip subsegment hypothesis is defined by its two lateral boundaries and its strip type. These
boundaries are called boundary subsegment hypotheses (modelled by the class BoundarySubsegHyp)
and describe the hypothesis of a boundary in its corresponding roadway subsegment. A Strip-

SubsegHyp refers to the two BoundarySubsegHyp objects that correspond to its two boundaries.
There are two cases where a BoundarySubsegHyp belongs to multiple StripSubsegHyp objects.
First, the case of two strip subsegment hypotheses of the same roadway subsegment hypothesis that
are neighbours and therefore have a common boundary. Second, the case of two strip subsegment
hypotheses of different roadway subsegment hypotheses that share a common boundary. The
latter case applies in our example, for instance, to the right boundary of the green coloured
lane in subsegment A: the two different strip subsegment hypotheses of this lane have the right
boundary in common as can also be seen in figure 3.5. A BoundarySubsegHyp contains a geometric
description of the boundary, the type of the boundary (lane marking, road curb, shoulder, etc.)
and other attributes of the boundary that may be relevant for the application.

The elements on the right side of figure 3.4 can be used to compose elements that describe
a single hypothesis. An object of type RoadwayHyp describes a single roadway hypothesis, for
example.
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3.4 Recommendations for Future Research

The multi-hypothesis road representation presented in this chapter has been implemented and used
in an automated vehicle as an interface between the perception system and behaviour planning
system. Unfortunately, in this application the added value of multiple hypotheses could not be
evaluated since the behaviour planning system only uses the most likely roadway hypothesis. The
reason for this is that no behaviour planning methods that consider multiple hypotheses have
been developed yet. Behaviour planning under consideration of multiple roadway hypotheses is
a part of the current PhD research by Frank Dierkes. The first publications about these new
methods, which use the multi-hypothesis road representation, are expected to be published in the
near future.

The representation, described in this chapter, can deal with uncertainty about the structure of
a roadway by representing multiple hypotheses. What is not yet possible is to express the degree
of uncertainty of each hypothesis. For example, assigning probabilities to hypotheses would allow
us to compare which of hypotheses are more likely to be true. Developing a probabilistic model for
the multi-hypothesis road representation is a non-trivial task and the possibilities for quantifying
the degree of uncertainty are not limited to probability values (for example, the Dempster-Shafer
theory [YL08] defines so-called belief functions and plausibility functions to express the degree
of uncertainty). Therefore the development of a mathematical model to express the degree of
uncertainty, is a topic of future research. The development of this model should consider how
the perception system generates hypotheses and the way the behaviour planning system handles
different hypotheses.

Currently, only roadways can be represented. In order to model a complete road network, it
must also be possible to model intersections. Because of the great variety in the possible structures
for an intersection, specifying a generic model for even a single hypothesis of an intersection, is
a non-trivial task; specifying a multi-hypothesis intersection model is even more difficult. Also
the connection between a roadway and an intersection may be ambiguous: e.g. is at a certain
location the roadway connected to an intersection, or does the roadway simply continue? Since
sensor-based perception of intersections has hardly received any attention within the research
community, it also unclear yet what ambiguities might occur at intersections. Nevertheless, as
soon as the multi-hypothesis representation proves itself useful (or maybe even necessary) at
roadways, future research on extending the representation with the representation of intersections
will be an important next step. Probably the most fruitful next step is to extend it first with
a representation of roundabouts instead of intersections in general, for the same reasons that
motivated the choice of roundabouts as a topic of this thesis (see section 1.2).
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Chapter 4

Roundabout Central Island
Detection

4.1 Introduction

As mentioned in chapter 1, sensor-based perception of roundabouts for highly automated driving
has not been a topic of research so far. This chapter contributes to this topic, by presenting a
method for detecting roundabout central islands in single-layer laser scans. A main advantage of
the method is that it does not rely on very costly and bulky high resolution laser scanners as used
on some research vehicles. Instead, the presented method uses a laser scanner that only has a few
scanning layers, which is a close-to-production automotive component (see section 2.3.2).

The principle by which one can measure (a part of) the central island with a single layer of a
laser scanner, is illustrated by figures 4.1 and 4.2. This principle is based on the fact that a central
island is bounded by a road curb. The laser scanner is built into the front bumper of the vehicle
and all of its layers are slightly tilted downwards. While approaching the roundabout, at some
point the vehicle is close enough such that within a single scan the laser is reflected by a part of
this curb. That is, in such a scan a part of the central island’s border is visible. The presented
algorithm detects this part of the scan and estimates the circle parameters of the central island.

The application of the presented method is not limited to roundabout perception. In general
it can be used to detect circular (parts of) objects in laser scans, or to detect circular arcs in point
sequences. The method is robust against measurement noise and imperfections of the circular
shape of the real-world object.

This chapter is based on our paper that was published in the proceedings of the 17th In-
ternational IEEE Conference on Intelligent Transportation Systems (ITSC) [RB14]. The major
difference with the paper is a more extensive evaluation of the method.

Section 4.2 gives a formal specification of the detection problem. An overview of the algorithm
is presented in section 4.3. One of the main contributions of this algorithm is the way it partitions
a laser scan into segments by two partitioning steps: the semi-convex partitioning step and the
curvature-based partitioning step, which are discussed in detail in sections 4.4 and 4.5 respectively.
Section 4.6 discusses how the algorithm was evaluated as a central-island detector and presents
experimental results. Based on the experimental results, conclusions are drawn in section 4.7.

4.2 Problem Statement

The goal is to detect the border of the central island of a roundabout through the detection of
circles in single-layer laser scans.

For many laser scanners with only a few layers, the differences in elevation between the curb of
the central island’s border and the road next to it cannot be observed, because of the uncertainty

27
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Figure 4.1: The red area is scanned by one of the laser scanner’s layers. The highlighted red line visualises
the locations where the laser is reflected by an object (which is the road surface or the central island’s
curb in this figure).

Figure 4.2: A side view where the scanning surface of one of the laser scanner’s layers intersects with the
central island’s curb.
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Figure 4.3: An illustration of the part of the central island’s border that can be observed by the laser
scanner: the border can only be observed from the outside.

for the elevation of a measured point caused by the divergence of the laser beam. We therefore
restrict ourself to the detection of circles in the projection of the 3d laser scan onto the xy plane.

The input to the algorithm is a sequence of point measurements generated by a single scan
of a laser scanner layer. We denote this input sequence by P = [p1, . . . , pn]. We assume that
the laser scanner scans in clockwise direction (as seen from a top-view). Consequently pi is the
i-th measurement in clockwise order around the laser scanner’s position. (Note that, because of
symmetry, the presented algorithm can be easily modified for counter-clockwise laser scans.) We
furthermore assume that the tangential uncertainty of a measurement is small enough to ensure
that clockwise order of the points p1, . . . , pn is the same as the clockwise order of the corresponding
real-world points that were measured. For simplicity, we make no distinction between a point
measurement’s uncertainty in radial direction and tangential direction. Instead, we assume the
absolute error of a point to be at most εm (which is assumed to be much smaller than the radii
of the central islands we want to detect). As mentioned, due to the measurement’s precision
the elevation of a point will not help us in distinguishing points on a curb from points on the
road. Hence, we will ignore the elevations from now on, and we consider the measurements pi
to be points in the two-dimensional xy-plane. We assume that the central island border is only
observable from the outside as illustrated by figure 4.3. That is, a point p on the border (in the
xy-plane) can only be measured by the laser scanner that is at position o (in xy-plane) if in the the
line segment op does not intersect the central island border except at p. For every point sequence
discussed in this chapter we silently assume that it is the output of a laser scanner and thereby
has the properties described above.

The problem we wish to solve is to detect the border of the roundabout’s central island using
the point sequence P . To make the problem statement more precise, we first present a model
of this border. Intuitively, the border of the central island is a circle in the two-dimensional
plane in which we assume the measurements lie. However, in practice the border will not be
an exact mathematical circle. To model this, we need the concepts of star-shaped curves and
ε-circle-approximations, we define next.

Recall that a Jordan curve, is a closed curve in the plane without self-intersections.

Definition 1 (star-shaped). A Jordan curve Γ is called star-shaped with respect to a point q
lying in the interior of Γ if and only if the following holds: for each point p ∈ Γ, the line segment
pq does not intersect Γ except at point p. The curve Γ is star-shaped if there exists a point q such
that Γ is star-shaped with respect to q.

Definition 2 (ε-circle-approximation). A Jordan curve Γ is called an ε-circle-approximation
of a circle with centre c if and only if Γ is star-shaped with respect to c and for every point on Γ
the closest distance to the circle is at most ε.

We assume that the real border of the central island is a Jordan curve Br. Furthermore we
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assume that there exists a circle Cr such that Br is an εc-circle-approximation of Cr for a certain
value of εc. That is, εc is used as a parameter to describe the maximum deviation of a central
island’s border from a perfect circle.

Intuitively, our goal is now to compute a circle C from the measurement sequence P that is a
good approximation of the circle Cr. This is complicated by the fact that the measurements pi
do not lie on Cr and, in fact, they do not even lie on Br: First of all, the sequence P not only
contains measurements of points on the central island’s curb but also of points on other parts of
the environment, like the road (as shown in figure 4.1), the interior of the central island or other
vehicles. Second, the measurements are not exact, so even the measurements of points that should
lie on Br do not lie exactly on Br.

Definition 3 (subsequence). Let Q = [q1, . . . , q|Q|] and Q′ = [q′1, . . . , q
′
|Q′|] be two sequences

with |Q′|≤ |Q|, where |Q| denotes the number of elements of a sequence |Q|. We then call Q′ a
subsequence of Q if and only if there exists some j ∈ N, with j ≤ |Q|−|Q′|, such that for each q′i
in Q′ we have q′i = qj+i.

The algorithm will detect (possibly more than one) potential circles in the input. More pre-
cisely, it will report a number of subsequences of P such that each reported subsequence contains
points that are “almost co-circular”, as defined below.

We define a least-square circle and a good circle fit as follows:

Definition 4 (least-square circle). A least-square circle of a point (sub)sequence Q = [q1, . . . , q|Q|]

is a circle C for which the sum
∑|Q|
i=1 d(qi, C)2 is minimal, where d(qi, C) denotes the orthogonal

distance from point qi to circle C.

Definition 5 (good fit). Given a parameter fmin ∈ [0, 1], a circle C is said to be a good fit for a
point (sub)sequence if at least n · fmin points in this sequence have a distance to circle C not more
than εc + εm.

The goal of our algorithm is now to find subsequences P ′ of P , together with a least-square
circle Clsq(P ′) of each such P ′, with the following properties:

1. P ′ should have at least nmin points, where nmin is a parameter.

2. The arc of Clsq(P ′) covered by P ′ should be of length at least 2πrlmin, where r is the radius
of circle Clsq(P ′) and lmin is a parameter specifying the minimal fraction of the circle that
needs to be covered.

3. Clsq(P ′) is a good fit for P ′.

4. P ′ is maximal in the sense that for no other subsequence of P that contains P ′, the constraints
above are satisfied for any circle C.

Note that above we specified the ideal behaviour of the algorithm. The algorithm presented in
this work approximates this behaviour in the sense that it might report only a subsequence of such
a maximal subsequence P ′. Thus our algorithm will report a collection of subsequences P ′ of the
input sequence P and corresponding least-square circles such that each subsequence P ′ satisfies
properties 1–3 above; the subsequences are not guaranteed to be maximal (and the algorithm may
even miss subsequences).

4.3 Algorithm Overview

Before discussing the algorithm we provide the following definition:
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ego vehicle other vehicle

central island curb

Figure 4.4: A schematic top-view drawing of a scenario where the laser scanner scans the curb of a central
island, another vehicle partially occluding the central island and the road. The blue points are points
measured by the laser scanner.

Definition 6 (partitioning of a sequence). Let Q be a point sequence. We say that S =
[S1, S2, . . . , Sm] is a partitioning of a point sequence Q if each Si is a subsequence of Q; for
each i, 1 ≤ i < m, the last element of Si is the first element of Si+1; the first element of S1 is
the first element of Q; and the last element of Sm is the last element of Q. The elements of S are
also called the segments of partitioning S.

The algorithm processes its input point sequence by the following steps (see also figure 4.5):

1. Neighbour-Based Splitting. Split the laser scanner’s point sequence into new sequences
based on neighbour distance: two neighbouring points pi, pi+1 of the input sequence are in
the same new sequence if and only if the distance between two those points is smaller than a
specified maximum dnb, where dnb is a given parameter. We perform this splitting because
a relatively large distance between neighbouring points only occurs if the laser ray is almost
parallel to the object’s tangent at the measured point, or at a discontinuity of the scanned
surface. For subsequences corresponding to a central island, the former can only occur at
the beginning or end of the sequence. A discontinuity can be caused if one object partially
occludes another object that was scanned (e.g. see figure 4.4 where the central island is
partially occluded by another vehicle).

2. Semi-Convex Partitioning. Split each sequence at the points where it is turning towards
the vehicle (i.e. the points where it is concave). The sensor will only see the circular border
from the outside and therefore the observable part of the central island’s border is convex
from the sensor’s point of view. Intuitively we want to split each sequence at those points
where it is concave, so that after this step we have a partitioning with only convex segments.
To make this step robust against noise and the fact that the real central island is not a perfect
circle, a small (parametrizable) amount of concavity is allowed. This step is explained in
detail in section 4.4.

3. Curvature-Based Partitioning. Since a circle has a constant curvature, we split each
semi-convex segment, generated in the previous step, further into segments at those points
where the curvature of the corresponding object cannot be constant. This step is discussed
in detail in section 4.5.

4. Circle Fitting & Constraint Checking. After the curvature-based partitioning, we are
left with a point sequence partitioning of which each segment is semi-convex and the curva-
ture change is small. After discarding all segments that contain less than nmin points, we
compute the least-square circle for the remaining segments using the Newton-based imple-
mentation of the Taubin fit which is described by Chernov [Che10]. For each of the computed
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split into segments where
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Figure 4.5: An overview of the algorithm.
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Figure 4.6: A convex point sequence [q1, . . . , q8]. Note how for each of the blue directed lines passing
through two neighbouring points, all points of the sequence at the left or on the directed line.

circles, constraints 2 and 3 (see section 4.2) are checked. If these constraints are satisfied
then the segment and its circle is reported as a detected circle.

For the application of roundabout detection there is an additional step which discards those
detected circles for which it is not plausible that they are a roundabout. This step uses an a
priori digital street map (in the experiments a map was used with the quality of regular consumer
navigation systems to date) and GPS localization, which provide us a rough estimate for the centre
and radius of the central island (±15m for the centre and ±5m for the radius). All circles that
are outside the plausible ranges for the centre and radius are discarded.

4.4 Semi-Convex Partitioning

The first step, as described in section 4.3, of the central detection algorithm splits the input
point sequence P into subsequences. The semi-convex partitioning step, which is discussed in this
section, is applied to each of these subsequences. So the semi-convex partitioning step operates
on a subsequence of P , and the complete laser scan point sequence P will not be of any relevance
anymore. We therefore reuse P = [q1, . . . , qn] to denote the point sequence to which the semi-
convex partitioning algorithm is applied.

4.4.1 Convexity and Semi-Convexity

For closed curves there exists a definition of what a convex closed curve means. For the explanation
of the following algorithm we define the meaning of the word convex in the context of laser scan
point sequences. We also define the lower convex hull of a laser scan point sequence. Recall that a
laser scan point sequence is ordered in clockwise direction around the position of the laser scanner.

Definition 7 (convex point sequence). A point sequence Q = [q1, q2, . . . , q|Q|] (see the exam-
ple in figure 4.6) is a convex point sequence if and only if we do not make right turns when
travelling over all points of Q in the order of the sequence. That is, for each triple of subsequent
points qi, qi+1, qi+2, point qi+2 is to the left or on the line through qi and qi+1 directed from qi to
qi+1.

Definition 8 (lower convex hull). For a point sequence Q = [q1, q2, . . . , q|Q|] the lower convex
hull of Q, denoted as LCH(Q), is a convex point sequence [h1, h2, . . . , hm] with the following
properties (see figure 4.7): (i) h1 = q1 and hm = qn, (ii) for each i < m there exist a and b with
a < b such that hi = qa and hi+1 = qb, and every point qc, with a < c < b, is to the left or on the
line through hi and hi+1 directed from hi to hi+1.

In the step of the algorithm discussed in this section, we make use of the fact that a circle is
convex and so we also expect many of the measured points to be in convex position. We use this
as a constraint on the partitioning of the laser scanner sequence. Let us assume for a moment
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Figure 4.7: A point sequence Q = [q1, . . . , q9] and its lower convex hull LCH(Q) = [h1, . . . , h6]. Note that
points q5 and q6 are to the left of the line through h4 and h5 directed from h4 to h5, and that point q8 is
to the left of the line through h5 and h6 directed from h5 to h6.

that the central island’s border is a perfect circle and that no measurement errors are made by the
laser scanner. Let P ′ be a subsequence of P . Then all points of P ′ are on a circle if all these points
correspond to points on the central island’s border. As a consequence, P ′ must be convex from
the laser scanner’s view point. So if three subsequent points pi, pi+1, pi+2 of P are not convex,
then these three points cannot all be on the central island’s border.

We say that a partitioning S of P is a minimal convex partitioning of P if all segments of S
are convex and the number of segments of S is minimal under this convexity condition. It can be
shown that there is exactly one minimal convex partitioning of P and therefore we can speak of the
minimal convex partitioning of P . Let S = [S1, S2, . . . , Sm] be the minimal convex partitioning of
P . Then if all points of a subsequence P ′ of P correspond to points on the central island’s border,
there must be a segment Si such that P ′ is a subsequence of Si.

So by computing the minimal convex partitioning of P , one partitions P into segments satis-
fying the convexity condition without splitting subsequences of P for which all points correspond
to points on the central island’s border. This is what we want to achieve in the step described
in this section. Unfortunately, in reality the central island’s border is not an exact circle and the
measurements made by the laser scanner are subject to measurement errors. As a consequence the
subsequences of P for which all points correspond to points on the central island’s border, will not
be convex in general. However, since the central island’s border is an εc-circle-approximation of a
circle, it will have approximately the form of a circle and will therefore be approximately convex.
Also because there is an upper bound on the laser scanner’s measurement error, a subsequence of
P will be approximately convex if all its points correspond to points on the central island’s border.
To make “approximately convex” concrete we introduce the concept of semi-convexity.

Definition 9 (ε-semi-convex). Let Q = [q1, . . . , q|Q|] be a point sequence generated by a laser
scanner and let LCH(Q) be its lower convex hull. We say that Q is ε-semi-convex if and only if
the following holds: For any two points qi and qj that are consecutive on LCH(Q), and any point
qk with i < k < j, the distance from qk to the line through qi and qj is at most ε. We refer to ε
as the semi-convexity error.

As an example of this definition, the sequence in figure 4.7 is ε-semi-convex if the points q5 and
q6 lie at distance at most ε of the line through q4 and q7, and point p8 lies at distance at most ε
of the line through q7 and q9.

4.4.2 Semi-Convexity of Sequences on the Central Island

For semi-convexity error ε = 2εc + 2εm we can show that if a subsequence P ′ of P is not ε-semi-
convex then not all of its points can be on the central island’s border. A proof of this directly
follows by applying the following lemma.

Lemma 1. Let P = [p1, p2, . . . , pn] be a laser scan point sequence such that for each point pi in
P the distance between pi and true point p̂i that induced measurement pi is at most εm. Take
two points pk, pm of P such that k < m and for every i, with k < i < m, the point pi is to
the left or on the line through pk and pm directed from pk and pm. Let there be a point pl in P
such that k < l < m and the shortest distance between pl and the line passing through pk and pm
is more than 2εc + 2εm. Then there exists no circle C and Jordan curve Γ, such that Γ is an
εc-circle-approximation of C and the true points p̂k, p̂k+1, . . . , p̂m−1, p̂m are on Γ.
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Figure 4.8: The blue area illustrates the area of possible locations of pl. The two grey circles represent
the possible locations of pk and pm given p̂k and p̂m.

Proof. Assume that there exists a circle with centre c and radius r, denoted as C(c, r), and an
εc-circle-approximation Γ of this circle. Also assume that all the true points p̂k, p̂k+1, . . . , p̂m−1, p̂m
are on Γ. We now prove the correctness of the lemma by showing that for every pl, k < l < m, the
shortest distance d(pl, `) between pl and the line ` passing through pk and pm is at most 2εc+2εm.

Note that since Γ is an εc-circle-approximation of circle C(c, r), the points p̂k, p̂l, p̂m must be
inside the annulus with centre c, inner radius r − εc and outer radius r + εc (see figure 4.8 where
the border of this annulus is drawn with solid blue lines). Since Γ is star-shaped with respect to c,
the points p̂l and p̂m must both be on the same side of the line passing through c and p̂k. Similarly
p̂l and p̂k must both be on the same side of the line passing through c and p̂m. In figure 4.8 this
means that p̂l must be on or between the two black dotted lines. Note that pl and c must be on the
same side of `, because otherwise point p̂k must have been measured from the inside of the circle’s
border. All these constraints, in combination with the constraint that the distance between pl and
p̂l is at most εm, define an area R for all possible values for pl. This area is highlighted in blue in
figure 4.8. To find an upper bound for d(pl, `) we will search for the point pmax in this area that
has the largest shortest distance to line `. Observe that such a point must be on the border of R.

We first search for a point on the part of R’s border that intersects with circle C(c, r− εc− εm)
(this circle is drawn in figure 4.8 with a red dotted line), that has the largest shortest distance
to line `. We call the intersection of R with the circle, arc A. Let q be the the point on circle
C(c, r − εc − εm) for which the distance to line ` is maximal. Observe that point q cannot be on
arc A. That implies that on of the two endpoints of arc A is closer to q on (c, r− εc− εm) than all
other points of A. Therefore one of A’s endpoints is farthest to ` of all points on A. Consequently
if pmax is on A, then pmax is one of A’s endpoints.

Observe that one endpoint of A is on the line passing through p̂k and c and the other endpoint
is on the line passing through p̂m and c (see figure 4.8). In the former (or latter) case p̂max must
be on the line passing through p̂k (or p̂m respectively) and c.

Note that pmax will not be on the intersection between line ` and R. So what remains of the
possible set of candidates for pmax are those points on the border for which the real point p̂max

is either on the line passing through p̂k and c or on the line passing through p̂m and c. We now
analyse the former case, which is symmetric to the latter case.

Let us assume that p̂k, p̂max, c are collinear. The maximum possible distance between any point
in the circle C(p̂k, εm) and any point in the circle C(p̂max, εm) is maximal if the distance is between
p̂k and p̂max is maximal. This is the case when p̂max is on circle C(c, r − εc) and p̂k is on circle
C(c, r + εc) as illustrated in figure 4.9. The maximum possible distance is then 2εc + 2εm. The
maximum possible shortest distance between any point in circle C(p̂max, εm) and any line passing
through the circle C(p̂k, εm) is at most the maximum possible distance between any point in circle
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Figure 4.9: The case where p̂k, p̂max and c are collinear.
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Figure 4.10: A point sequence (the black dots ordered from left to right) and two of its ε-semi-convex
subsequences from qa to qd (the blue and green part) and from qc to qf (orange and green part). The part
where the two ε-semi-convex sequences overlap is highlighted in green.

C(p̂max, εm) and any point in circle C(p̂k, εm). We therefore can conclude that the distance between
pmax (which is in circle C(p̂max, εm)) and line ` (which passes through circle C(p̂k, εm)) is at most
2εc + 2εm.

Therefore the shortest distance d(pl, `) between pl and ` is at most 2εc + 2εm.

Note that it can be shown that the upper bound 2εc + 2εm in the previous lemma is tight (i.e.
if we replace 2εc + 2εm by a smaller value, the lemma will not be true anymore).

For the ideal case of no measurement errors and a perfectly circular central island, discussed
in section 4.4.1, we are able to generate a convex partitioning S = [S1, S2, . . . , Sm] of P in such
way that if all points of a subsequence P ′ of P correspond to points on the central island’s border,
then there exists a segment Si of S such that P ′ is a subsequence of Si. This is because every
possible convex subsequence of P is a subsequence of one of the segments of the partitioning S.
This is not always true when we consider semi-convexity as stated by the following lemma.

Lemma 2. Not for every point sequence Q = [q1, . . . , q|Q|] and semi-convexity error ε it is possible
to have an ε-semi-convex partitioning S of sequence Q such that every possible ε-semi-convex
subsequence of Q is a subsequence of one of the segments of S.

Proof. An ε-semi-convex subsequence [qi, . . . , qj ] of Q is called a maximal ε-semi-convex subse-
quence of Q if subsequences [qi−1, . . . , qj ] (if i > 1) and [qi, . . . , qj+1] (if j < |Q|) are not ε-semi-
convex. Consider the configuration illustrated by figure 4.10 where, for a specific ε, the sequences
[qa, . . . , qd] and [qc, . . . , qf ] are maximal ε-semi-convex. Note that the two ε-semi-convex sequences
[qa, . . . , qd] and [qc, . . . , qf ] overlap in [qc, . . . , qd]. Let us assume that there exists an ε-semi-convex
partitioning S of Q such that every ε-semi-convex subsequence of Q is a subsequence of one of
the elements of S. Then that means that the ε-semi-convex subsequence [qa, . . . , qd] must be a
segment of S. However that would mean that no other segment of S can contain the subsequence
[qc, . . . , qd] and therefore there will be no segment of S of which [qc, . . . , qf ] is a subsequence. This
contradiction completes the proof.

Lemma 2 tells us that if we partition into ε-semi-convex segments then it might be the case
that we separate two subsequences of P that are both on the central island’s border, because it is
not always possible to create a partitioning of P of which each segment is maximal ε-semi-convex.
This is not very desirable since in all following steps of the algorithm we only consider the points
within a single segment as candidates for circle detection.
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Figure 4.11: The semi-convex partitioning algorithm adds pi to the segment [pj , . . . , pi−1] if for each point
between pb and pi the distance to the dashed line is at most 2εc + 2εm.

4.4.3 Semi-Convex Partitioning Algorithm

As an alternative for creating a partitioning of P of which each segment is maximally ε-semi-
convex, we can create a partitioning S = [S1, S2, . . . , Sm] of P of which each segment Si corresponds
to a maximal ε-semi-convex subsequence P ′ of P . Let P ′a be the overlap of subsequence P ′ and
the maximal ε-semi-convex subsequence corresponding to segment Si−1. Similarly let P ′b be the
overlap of subsequence P ′ and the maximal ε-semi-convex subsequence corresponding to segment
Si+1. Instead that Si contains all points of P ′ it contains the part of P ′ that does not overlap
with other maximal ε-semi-convex subsequences, it contains P ′a if it is not in Si−1 and it contains
P ′b if it is not in Si+1. This means that each overlap of two maximal ε-semi-convex subsequences
of P , appears in exactly one segment of S.

With such a partitioning we make an “error” when we split a maximal ε-semi-convex sub-
sequence at the point where it overlaps with another maximal ε-semi-convex subsequence. In
practice, the length of the overlapping part of two maximal ε-semi-convex subsequences is ex-
pected to be small. Therefore the effect of the error we make using such a partitioning is expected
to be rather limited (this is confirmed by the experimental results in section 4.6.3).

A partitioning as specified above can be computed by algorithm 4.1 which we will discuss now.
The algorithm iterates over the points of point sequence P in the order of the sequence. While
doing so, it keeps track of the lower convex hull of the segment that it is currently constructing
(represented by variable Scurr). Thus, if the algorithm is at point pi and the current segment starts
at point pj (j < i), then it has a list H containing the indices of those points in P that are on the
lower convex-hull (marked blue in figure 4.11) of the segment [pj , . . . , pi−1]. When handling point
pi the algorithm decides whether pi should added to the current segment Scurr = [pj , . . . , pi−1].
The algorithm first searches (see the loop at line 7) for the last two subsequent points pa and pb
in the lower convex hull for which pi is not to the right of the line through pa and pb directed
from pa to pb. After these two points are found, the algorithm verifies (see the loop at line 12) for
each point on P between pb (b = H(k) after the execution of the loop at line 7) and pi, whether
the shortest distance between the point and the line passing through pb and pi (the dashed line
in figure 4.11) is at most 2εc + 2εm. If this is the case, then [pj , . . . , pi−1, pi] is ε-semi-convex and
pi is added to the current segment Scurr. Moreover all indices corresponding to points after point
pb are removed from H and index i of point pi is appended to H. If not, then [pj , . . . , pi−1, pi] is
not ε-semi-convex which forces the algorithm to terminate current segment at pi−1 and to start a
new segment that is initialized by [pi−1, pi].

Lemma 3. The time complexity of the semi-convex partitioning algorithm is O(n2) where n is
the number of points of P .

Proof. The algorithm iterates over all n points of P . During the iteration for a point pi, finding
pa and pb requires in the worst case (in which H = [p1, p2, . . . , pi−1]) i constant-time operations.
So the complexity of finding pa is O(i). After pa and pb are found the algorithm scans through all
points between pb and pi and computes their distance to the line passing through pb and pi. In
the worst case pa = p1 for which this scan consists of O(i) steps. So the total time complexity of
one iteration step of the algorithm is O(i), which gives us an O(n2) time complexity for the total
algorithm.



38 4. Roundabout Central Island Detection

Algorithm ComputeSemiConvexPartitioning([p1, . . . , pn], εc, εm)
1. ε← 2εc + 2εm; S ← [ ]; Scurr ← [p1]; H ← [1]; i← 2
2. {Invariant: S ++ [Scurr] is an ε-semi-convex partitioning of [p1, . . . , pi−1]}
3. {Invariant: LCH(Scurr) = [pH(1), pH(2), . . . , pH(|H|)]}
4. while i ≤ n
5. do k ← |H|
6. {Invariant: points pH(k)+1, pH(k)+2, . . . , pi−1 are not in LCH(Scurr ++ [pi])}
7. while k > 1 and pi is to the right of ~̀(pH(k−1), pH(k))
8. do k ← k − 1
9. b← true
10. r ← H(k) + 1

11. {Invariant: b = (∀s : H(k) < s < r : d(ps, ~̀(pH(k), pi)) ≤ ε)}
12. while r < i ∧ b
13. do b← (d(pr, ~̀(pH(k), pi)) ≤ ε)
14. r ← r + 1
15. if b
16. then H ← [H(1), . . . ,H(k)] ++ [i]
17. Scurr ← Scurr ++ [pi]
18. else S ← S ++Scurr

19. Scurr ← [pi−1, pi]
20. H ← [i− 1, i]
21. i← i+ 1
22. return S ++Scurr

Algorithm 4.1: The semi-convex partitioning algorithm. Given a point sequence [p1, . . . , pn], and param-
eters εc and εm, this algorithm computes a partitioning of the point sequence of which each segment is
ε-semi-convex (with ε = 2εc + 2εm) and corresponds to a maximal ε-semi-convex subsequence of the point

sequence. Here ~̀(a, b) denotes the line through points a and p directed from a to b, and H(t) denotes the
t-th element of H.

4.5 Curvature-Based Partitioning

After partitioning the laser scan point sequence into ε-semi-convex segments, these ε-semi-convex
segments are further partitioned into segments for which the change in curvature is small. We
do this because a circle has a constant curvature and therefore two subsequences with a different
curvature cannot correspond to points of the same circle. Note that a laser scanner subsequence
corresponding to points of the central island’s border will not be exactly on a circle. First be-
cause the border itself is not an exact circle but an εc-circle-approximation. Second because the
point measurements of the border are subject to measurement errors. However, a subsequence
corresponding to points on the border will deviate no more than εc + εm from a circle.

In this subsection we describe an algorithm which splits a point sequence into segments at
points where the curvature changes. This algorithm is applied to each segment of the partitioning
generated by the semi-convex partitioning algorithm described in section 4.4. We redefine P =
[p1, . . . , pn] for this section to be the input point sequence to which the curvature-based partitioning
algorithm is applied.

For a continuous planar curve the definition of the curvature at a given point on the curve can
be described in multiple ways [WS93]. One of these ways is to define the curvature of a point p
on a curve Γ as the reciprocal of the radius of the osculating circle of Γ at point p. The osculating
circle at a point p on a curve Γ is the circle that passes through p and the points of Γ that are
infinitesimally close to p. Another way is to define the curvature of a point p on a curve Γ as
the rate of change of the direction of the tangent vector of Γ at point p. Note that these two
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definitions of curvature are equivalent.
For a sequence of points it is not directly clear what curvature means. If we assume that a

point sequence Q = [q1, . . . , q|Q|] sufficiently approximates a curve Γ then we can say that the
curvature of Q at one of its points qi is equal to the curvature of Γ at qi. So if Q is a good
approximation of Γ then we can obtain Q’s curvature at qi by computing the osculating circle
that passes through the of points Q that are near qi. Let us specify which points are considered
to be near qi. If the sequence Q does not contain any noise (i.e. all its points are on the curve
Γ) then the osculating circle can be obtained by computing the circle passing through qi−1, qi
and qi+1. However in practice Q contains noise and the osculating circle must be approximated.
To approximate the osculating circle at a point qi we fit a circle to the points [ql, . . . , qi, . . . qr],
where l is the smallest index such that the distance between each point in [ql, . . . , qi−1] and qi is at
most w and r is the largest index such that the distance between each point in [qi+1, . . . , qr] and
qi is at most w. Here w is a given parameter which depends on the range of curvatures we wish
to detect and characteristics of the input point sequence like the noise distribution or sampling
density. Accompanied with w there is a second parameter ρ∆ which specifies how accurately the
curvature can be approximated given w and the input characteristics. Also in this step of the
algorithm, circle fitting is done using the Newton-based implementation of the Taubin fit [Che10].

Let us assume that S ′ = [S′1, S
′
2, . . . , S

′
m] is a given partitioning of the input point sequence P

such that for each subsequence S′i there exists a straight line ` for which the distance from each
point of S′i to ` is at most a specified maximum εs. We can then say that the tangent of sequence
P does not change within a subsequence S′i if we ignore deviations of size εs. We use only those
points of P , which are the last point of one of the segments of S ′, as candidate points for splitting
P as follows. Let p be the last point of a subsequence S′i. Then there are two cases in which
we want to split P at p. First if the curvature of P at p differs from the curvature at the last
point of the previous subsequence S′i−1. Second if the curvature of P is not constant within the
combination of subsequences S′i and S′i+1. We start by verifying whether the second case holds.
According to what we wrote above, the osculating circle of P at p is found by fitting a circle to
the points within the window specified by w around p. However instead of doing that (since we
know that within a segment the curvature does not change significantly) we extend the window
such that it also covers S′i and S′i+1. If the resulting circle is not a good fit to the points within
that window, then P is split at p since we know that the curvature of P is not constant within
the combination of subsequences S′i and S′i+1. If the resulting circle is a good fit, then this circle
will be a good approximation of the osculating circle at p. If the curvature of this circle differs
more than ρ∆ from the curvature at the last point of the preceding subsequence S′i−1 (i.e. when
the first case holds), then P is split at p.

Above we used the partitioning S ′ as a simplification (controlled by parameter εs) of P in
order to speed up the algorithm by computing only the curvature of P at the reduced set of
points, provided by the simplification, instead of all points of P . Furthermore this simplification
introduces a desirable smoothing effect on the original point sequence. The right value for εs can
be found empirically and may require some fine tuning. Choosing εs too large will decrease the
accuracy of locating the points in P where the curvature changes. Due to the sensor resolution
and noise characteristics there is a limit on how accurate curvature changes can possibly detected.
So choosing εs too small may not improve the accuracy but it will increase the computation time.

Until now we assumed that a partitioning S ′ was given, but of course it also has to be computed.
In the implementation used for the evaluation of the presented approach, we used the iterative
end-point algorithm [Ram72] to compute S ′. This algorithm takes the vertices of a polyline as an
input and produces a polyline consisting of a subset of the input vertices, such that the smallest
distance of each input vertex to the output polyline is at most εs.

Algorithm 4.2 shows the pseudo code for the curvature-based partitioning algorithm.

Lemma 4. The time complexity of the presented algorithm that, given the partitioning S ′, splits
P at points where its curvature changes, is O(mw/dmax + n). Here n is the number of points of
P , m is the number of segments of S ′ and dmax is the upper bound on the point density of P .
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Algorithm ComputeCurvatureBasedPartitioning([p1, . . . , pn], εs, w, ρ∆)
1. Compute a partitioning [S′1, . . . , S

′
m] such that for each subsequence S′i there exists a

straight line ` for which the distance from each point of S′i to ` is at most εs.
2. S ← [ ]; Scurr ← S′1; i← 1; j ← |S′1|; b← true
3. {Invariant: [S′1, . . . , S

′
i] is a partitioning of point sequence [p1, . . . , pj ]}

4. {Invariant: S ++ [Scurr] is a partitioning of point sequence [p1, . . . , pj ]}
5. {Invariant: b = ((i > 1) ∧ (S′i−1 a subsequence of Scurr))}
6. while i < m
7. do l← 0
8. {Invariant: (∀e : j − l ≤ e < j : d(pj , pe) ≤ w)}
9. while j − l > 1 ∧ d(pj , pj−l−1) ≤ w
10. do l← l + 1
11. if l < |S′i|−1
12. then l← |S′i|−1
13. r ← 1
14. {Invariant: (∀e : j < e ≤ j + r : d(pj , pe) ≤ w)}
15. while j + r < n ∧ d(pj , pj+r+1) ≤ w
16. do r ← r + 1
17. if r < |S′i+1|−1
18. then r ← |S′i+1|−1
19. c← FitCircle([pj−l, . . . , pj+r])
20. ρc ← curvature of c
21. if c is a good fit and (¬b ∨ |ρ− ρprev|≤ ρ∆)
22. then Scurr ← Scurr ++ [pj+1, . . . , pj+|S′

i+1|−1]
23. ρprev ← ρ
24. b← true
25. else S ← S ++ [Scurr]
26. Scurr ← [pj , . . . , pj+|S′

i+1|−1]
27. b← false
28. j ← j + |S′i+1|−1 {minus one since S′i and S′i+1 have one point in common}
29. i← i+ 1
30. return S ++Scurr

Algorithm 4.2: The curvature-base partitioning algorithm.

Proof. At each segment S′i of S ′ we have to compute the circle that fits the points within the
window around the last point of S′i. The upper bound dmax on the point density also gives
us the upper bound bw/dmaxc on the number of points to the left/right of the last point of S′i
within a window with width 2w. If this window does not cover all points of segments S′i and
S′i+1, then the algorithm extends the window such that it covers both segments. So the number
of points, within the window around the last point of Si, is at most 1 + max(bw/dmaxc, |S′i|) +
max(bw/dmaxc, |S′i+1|) ≤ 1 + 2bw/dmaxc + |S′i|+|S′i+1|. Since the circle fitting algorithm is a
linear-time algorithm, the total time complexity of the algorithm is:

O

(
m−1∑
i=1

(
1 + 2b w

dmax
c+ |S′i|+|S′i+1|

))
= O

(
wm
dmax

+ n
)

Note that dmax can be computed given the laser scanner’s horizontal resolution and the minimal
distance between the laser scanner and the points of P . Computing S ′ using the iterative end-point
algorithm has a time complexity of O(mn).



4.6. Evaluation 41

4.6 Evaluation

4.6.1 Evaluation Goals and Experimental Setup

Section 4.2 gives a formal specification for the problem of detecting circles in point sequences.
The goal of the evaluation in this section is not only to evaluate how well the proposed algorithm
works as a circle detector according to this specification, but also how well the system as a whole
performs as a central-island detector. The system could have an excellent performance as a circle
detector, but may be very bad as a central-island detector. This would, for example, be the case
when the laser ray of the laser scanner never hits the central island’s curb. Therefore the goal of
this evaluation is to answer the following questions:

� How good is the input data of the circle detection algorithm? Does it contain point sequences
that are on the central island’s border?

� If the input contains a sequence on the central island’s border, is it detected by the detector?

� How often is a circle detected that does not correspond to a central island?

� What are the characteristics of the detected circles?

� Are there any differences among the detection results for different roundabouts and/or gates?

The following subsections specify these questions and their answers in more detail.
The evaluation is based on sensor recordings by a testing vehicle done at six different round-

abouts. An overview of the roundabouts can be found in appendix A. Each of these roundabouts
has four entrance gates, where each entrance gate was approached three times. This gives a total
of 72 recordings.

The geometry of each of the roundabouts was measured, in global coordinates, using a highly
accurate DGPS device. Not only the geometry of the central island was measured, but also that
of the outer border, the gate endpoints and the splitter islands. For the evaluation in this chapter,
however, only the central island’s geometry is used. For each central island multiple points were
measured at different locations on the top of the central island’s curb. The global uncertainty of
each measured point never exceeded 2 cm. These points were used to fit a circle, which gave a
radius, a centre in global coordinates and a fit error. For all roundabouts, the root mean square
error of the fitted circle was at most 0.02 m. For the whole set of roundabouts the largest distance
of a measured point to the fitted circle was 0.06 m.

The testing vehicle used for the recordings was equipped with a highly accurate positioning
system, consisting of DGPS and an inertial measurement unit, that logged the vehicle’s global
position and orientation during the recording at a frequency of 100 Hz. The orientation and
position measurement error by this system never exceeded 0.08° and 4 cm respectively. Using
the geometry of the central island in global coordinates and the vehicle’s global pose, the central
island’s geometry relative to the vehicle was computed for each time instant where a laser scan
was done. These relative geometries are used as the ground truth in this evaluation.

Since we want to compare the detection performance for different roundabouts and different
gates we tried to keep two of the recording aspects the same across all recordings. First, the
velocity at which the vehicle approached the roundabout was approximately 20 km/h. This was
done because a difference in velocity may result in a difference in the density in which an area is
scanned by the laser scanner (i.e. if the vehicle drives slower, there will be more laser scans per
area). Second, the view to the central island was kept free in the sense that no other vehicles
occluded the view to the central island’s border for the laser scanner. Of course a robust central-
island detector should also be able to detect a central island when other vehicles are on the
roundabout, but having recordings free of occlusions by other vehicles allows us to do a fair
comparison on the performance at different roundabouts and gates. The performance of the
detector for cases where the roundabout is (partially) occluded by other vehicles, could be a topic
of future evaluations and some existing measurements have already shown that also in these cases
the central island is detected.
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For this evaluation the algorithm was parametrized as follows: lmin = 0.1, ρ∆ = 0.03 m−1,
εc + εm = 0.3 m, εs = 0.35 m, nmin = 50, dnb = 0.5 m, fmin = 0.95, w = 1 m. Details about the
laser scanner that was used are given in section 2.3.2.

Section 4.4 tells us that for the semi-convex partitioning algorithm, the parameter ε, defining
the maximum semi-convexity error, should be 2εc+2εm. However, practice showed that using value
ε = εc + εm, the number of false central island detections decreases drastically while the decrease
in the number of true detections is negligible (this will be shown in section 4.6.3). Therefore for
this evaluation ε = εc + εm is used.

The computation time of the algorithm on single-layer laser scanner point sequences of 581
points never exceeded 2 ms on an Intel Core i7 PC. This means that less than 6 ms is needed
to process the scans by three layers, which is a small fraction of the 40 ms cycle time at which
the laser scanner produces laser scans for three layers simultaneously. These computation times
indicate that the algorithm could be used in a real-time system for online roundabout detection.

4.6.2 Input Data Quality

Before evaluating the performance of the presented algorithm, the quality of the algorithm’s in-
put is evaluated by investigating how often the laser scanner sequence contains a subsequence
corresponding to the central island. Knowing the ground truth for the central island’s geometry
relative to the vehicle (something that is not known to the algorithm), benchmark sequences are
extracted from the laser scan with the following specifications:

1. A benchmark sequence should have at least the minimum number of points nmin.

2. The arc of the ground truth circle, with radius r, covered by a benchmark sequence should
be at least of length 2πrlmin.

3. The distance between neighbouring points in a benchmark sequence is at most dnb.

4. At least 95% of a benchmark sequence’s points has a distance of at most εc + εm = 0.3 m to
the ground truth circle.

5. All points of a benchmark sequence have a distance of at most 0.6 m to the ground truth
circle.

6. A benchmark sequence is maximal in the sense that there exists no other subsequence of the
benchmark sequence, satisfying all the constrains above.

Note that this specification largely corresponds to the specification in section 4.2 of circles that
should be detected by the presented algorithm. The main difference however is that we allow at
most 5% of the points to be further away than εc + εm from the reference circle. This is done
because of cases like the one illustrated in figure 4.12. In such cases for the majority of the points
the distance to the reference circle is less than εc + εm, but for all points the distance to the
sequence’s least-square circle is less than εc + εm. According to the specification in section 4.2,
the circle detector should detect such a circle and since the point sequence still corresponds to the
central island, we also want such a point sequence to be a benchmark sequence.

Table 4.1 gives an overview of the number of detected benchmark sequences for each of the
studied roundabout gates. Compared to all other roundabouts the recordings at all gates of
the Casino roundabout contain the highest number of benchmark sequences with an average of
approximately 100 per recording. The most plausible explanation for this is that the Casino
roundabout has the highest central island curb and therefore it is more likely that the laser ray
reflects at the curb. A second roundabout where the laser scanner performed well at “hitting” the
central island curb at all gate, is the Gaimersheim Large roundabout. The Gaimersheim Small
roundabout has the smallest central island among the roundabouts of the experiment and has
only a few benchmark sequences per approach. A plausible explanation for the low number of
benchmark sequences may be the relatively low curb height of 8 cm. The reason why almost no
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Figure 4.12: Above you see the ground truth circle, coloured dark blue, and the area for which the distance
to the ground truth circle is not more than εc + εm, coloured bright blue. Also a set of points can be
seen in which there is one point with a distance larger than εc + εm to the ground truth circle. Below the
dark green circle is the least square circle of that set of points and the bright green area is the area for
which the distance to the least square circle is not more than εc + εm. One can see that for all points the
distance to the least square circle is less than εc + εm.

benchmarks were measured at gate 1 of Gaimersheim Small, can be explained by the fact that the
road that approaches the gate goes uphill before it reaches the roundabout.

A possible reason for having no benchmarks at gate 0 of the Gymnasium roundabout could be
that the road bends just before the roundabout and because the road goes slightly down hill. The
absence of benchmarks at gate 1 of the Gymnasium roundabout could be because the approach
lane is far from perpendicular to the roundabout. However further analyses of the sensor in
combination with this roundabout need to be done to find an explanation for the overall bad
performance at the Gymnasium roundabout.

When visually inspecting the laser scans at roundabout MX303, it appears that the laser
reflects mostly at the hill on the roundabout instead of the central island’s curb. Maybe the curb
does not have such a good reflectivity as its surrounding area (the hill behind it and asphalt in
front of it), which could be an explanation for these results. Future analyses are required to find
out whether this is the cause.

Although the curbs of roundabouts MX303 and Gymnasium are higher than the curb of the
Lana Grossa roundabout, there are more benchmarks at gate 1 and 2 of Lana Grossa than at the
gates of MX303 and Gymnasium. The photos of the curbs in appendix A show that the curbs
of roundabouts MX303 and Gymnasium are less steep compared to the other roundabouts. This
means that the angle of incidence of the laser beam will be higher for those curbs, which may be
a cause for the lower number of benchmark sequences.

The laser scanner performs quite well at gates 1 and 2 of the Lana Grossa roundabout. The
road approaching gate 3 is slightly rolled in relation to the roundabout (i.e. the plane of the road’s
surface is not parallel to the plane of the roundabout) which could be an explanation for its bad
performance there, but whether this is the main cause of the bad performance at gate 0 can only
be answered after further analysis.

It should be noted that in previous experiments done at the Lana Grossa roundabout with
an older version of the laser scanner, the measurements contained significantly more benchmark
sequences. The older version of the laser scanner and the one used for the experiment presented
in this chapter differ slightly in their optical properties, that are known to make the older version
more sensitive for measuring points on the ground. These measurements are not included in this
evaluation since they were only done at the Lana Grossa roundabout and therefore cannot be used
for a fair comparison with the performance at other roundabouts. However these differences in
performances between two versions of the sensor show that a significant part of the performance
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Roundabout Gate Total # Bench Avg # Bench Min # Bench Max # Bench

Lana Grossa 0 0 0 0 0
Lana Grossa 1 67 22.3333 17 27
Lana Grossa 2 82 27.3333 23 36
Lana Grossa 3 0 0 0 0

MX303 0 2 0.66667 0 2
MX303 1 40 13.3333 11 15
MX303 2 53 17.6667 13 26
MX303 3 19 6.3333 3 9

Gymnasium 0 0 0 0 0
Gymnasium 1 0 0 0 0
Gymnasium 2 32 10.6667 9 14
Gymnasium 3 37 12.3333 11 15

Casino 0 301 100.3333 99 103
Casino 1 304 101.3333 92 110
Casino 2 326 108.6667 92 117
Casino 3 280 93.3333 88 97

Gaimersheim Small 0 36 12 8 17
Gaimersheim Small 1 2 0.66667 0 2
Gaimersheim Small 2 42 14 11 18
Gaimersheim Small 3 28 9.3333 8 11
Gaimersheim Large 0 216 72 68 77
Gaimersheim Large 1 252 84 78 91
Gaimersheim Large 2 336 112 100 120
Gaimersheim Large 3 196 65.3333 63 67

Table 4.1: This table shows for the three recordings of each studied roundabout gate the total, average,
minimum and maximum number of bench mark sequences.

in detecting the central island depends on the characteristics (e.g. sensitivity, low-level processing
of the raw sensor data) of the sensor instead of only on the geometry of the roads and roundabout
and geometrical properties of the scan layers.

Despite different performances at different roundabouts and different gates, we see that at each
gate the results are very well reproducible since per gate the variations in number of benchmark
sequences is very small.

It can be concluded that the performance of the laser scanner measuring the central island’s
curb, varies among the different roundabouts. The exact reasons for a low number of benchmark
sequences at certain roundabouts and gates cannot be given in general and should be subject of
future research. However, it is shown that the principle of measuring the central island curb with
a laser scanner works. Since it makes no sense to evaluate the performance of the central island
detection algorithm for input where there is nothing to detect, only the following roundabouts
where selected for further evaluation in the rest of this section: Casino, Gaimersheim Large and
gates 1 and 2 of Lana Grossa.

4.6.3 Detection Performance

In this part we evaluate how well the detection algorithm performs as a central-island detector.
Ideally, as a central-island detector, the algorithm detects a circle for each benchmark sequence and
no other circles. In order to analyse how much the algorithm deviates from this ideal behaviour,
we count the number of benchmark sequences for which the algorithm detected no circle. In other
words: we count the number of times the algorithm did not detect the central island although it
should have detected it. We also count the total number of detections by the algorithm in order
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Roundabout Num Bench Num Circles B w/o C

Lana Grossa 149 440 15
Casino 1211 1599 29

Gaimersheim Large 1000 1601 6
Total 2360 3039 50

Total(1) 2144 3039 16
Total(2) 2360 4186 39

Table 4.2: For each roundabout the number of benchmark sequences, number of circles detected by the
algorithm and the number of benchmarks sequences for which the algorithm did not detect a circle (B
w/o C). The row “Total(1)” shows the total values if we do not allow benchmark sequences to have points
with a distance more than 0.3 m from the ground truth circle. Row “Total(2)” shows the total values if
the ε = 2εc + 2εm is used for the semi-convex partitioning step.

to get an idea how many circles are detected that do not correspond to the central island.
Although ideally the detector should not detect any other circles than the central island, in

section 4.2 the problem of detecting central islands is specified as the problem of finding circles in
point sequences generated by a laser scanner. So it will be inevitable that other circular objects
are detected by the algorithm as well. Since the last step of the algorithm performs a circle fit and
checks the quality of the fitted circle, the algorithm will guaranteed never report detections that
do no correspond to circles with the criteria specified in section 4.2. This means that all circles
that are detected by the algorithm and that do not correspond to the central island, are not false
circle detections but are false central island detections.

We say that a benchmark was detected by the algorithm if and only if the algorithm has
detected a circle of which the corresponding point sequence contains at least 80% of the points of
the benchmark sequence. Since it is not expected from the algorithm to split the input sequence
at exactly the endpoints of the benchmark sequence, this empirical value of 80% is chosen to
specify that the point sequence corresponding to the detected circle must contain a large part
of the benchmark sequence. Figure 4.13 shows an example of a benchmark sequence that was
successfully detected by the algorithm. It also shows how the semi-convex partitioning step split
up the input sequence at the point where it starts to drift away from the ground truth circle. A
successful detection, for which the fitted circle better matches the ground truth circle, can be seen
in figure 4.14.

Table 4.2 shows for roundabout Gaimersheim Large, Casino and Lana Grossa (only gates 1
and 2) the number of benchmark sequences, the total number of detected circles and the number
of benchmark sequences that were not detected. We see that the number of benchmarks that
were not detected is relatively low. This number is relatively the highest for the Lana Grossa
roundabout where 10.1% of the benchmarks were not detected. For the Casino and Gaimersheim
Large roundabouts less than 2.5% of benchmarks were not detected.

Let us now have a look at what the causes are for benchmarks not being detected. The basic
principle of the presented algorithm is to split up the point sequence in the input into smaller
subsequences and to try to fit a circle to each final subsequence satisfying certain criteria. This
means that the algorithm can make an error by splitting up a sequence at a wrong position, or
by not splitting up a subsequence while it should have split it. The former kind of error is called
an unnecessary split and the latter is called a missed split. If a missed/unnecessary split is the
cause for an undetected benchmark sequence, then it is called a fatal missed/unnecessary split.
We distinguish three kinds of causes for benchmarks not being detected: fatal unnecessary splits
in the semi-convex partitioning step, fatal unnecessary splits in the curvature-based partitioning
step and fatal missed splits. The main cause of each benchmark not being detected is considered
to be one of these three kinds based on the following criteria:

� Let P ′ be the benchmark sequence and Q be the set of points in P ′ where the semi-convex
partitioning step made splits. Let S be the partitioning of P ′ that is obtained when P ′ is
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Figure 4.13: An example where the algorithm correctly splits the input point sequence at the point where
it starts to move away from the central island.
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Figure 4.14: An example where the detected circle is very similar to the ground truth circle.
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split at the points that are in Q. Assume for partitioning S we would run the final step of
the algorithm which fits a circle and checks the specified constraints. Then if in that final
step no circle is detected that has at least 80% of the points of P ′ (i.e. there is no detected
circle that is a detection of the benchmark sequence), the cause of the benchmark not being
detected is a fatal unnecessary semi-convex split.

� Let P ′ be the benchmark sequence and Q be the set of points in P ′ where both the semi-
convex and curvature-based partitioning step made splits. Let S be the partitioning of P ′

that is obtained when P ′ is split at the points that are in Q. Assume for partitioning S
we would run the final step of the algorithm which fits a circles and checks the specified
constraints. Then if in that final step no circle is detected that has at least 80% of the points
of P ′, the cause of the benchmark not being detected is a fatal unnecessary curvature-based
split, unless the cause is a fatal unnecessary semi-convex split.

� If the cause of not detecting a benchmark is not a fatal unnecessary split then is must be a
fatal missed split.

Theoretically there may be a fourth cause for not detecting a benchmark and that is the possibility
that the least-square circle for the benchmark sequence does not satisfy the constraints that are
verified by the last step of the algorithm. However this case never occurred in any of the evaluation
runs and is therefore not mentioned in the remainder of this section.

Table 4.3 gives an overview of the frequency of each of these causes for the evaluated recordings.
The first row of the table shows the data for the configuration in which we want to evaluate the
algorithm, that is, the configuration in which the semi-convex partitioning step allows a maximum
semi-convexity error of εc + εm and where at least 95% of the benchmark sequence’s points must
have a distance of at most 0.3 m to the ground truth circle. In this configuration the majority of
the causes are the fatal semi-convex splits and fatal missed splits. Since we allow 5% of the points
of a benchmark sequence to have a distance between 0.3 m and 0.6 m it may be possible that some
benchmark sequences are sequences that cannot correspond to an εc-circle approximation in the
real world. If we only consider those benchmark sequences that have all points within the 0.3 m
margin, then table 4.2 shows that we have 2144 instead of 2360 benchmark sequences and that the
number of undetected benchmarks is 16 instead of 50. For this case the second row of table 4.3
shows that the number of fatal semi-convex splits decreases from 34 to only 6.

Let us now turn to the explanation for choosing the maximum semi-convexity error to be
εc+εm instead of 2εc+2εm. In table 4.2 we can see that by choosing εc+εm instead of 2εc+2εm,
the total number of detected circles decreases by 1147 while the number of undetected benchmark
circles only decreases by 11. So this means that by choosing εc+εm instead of 2εc+2εm we detect
fewer circles that do not correspond to the central island while detecting negligibly fewer circles
that do correspond to the central island. This justifies our choice since it results in an algorithm
of which the behaviour is closer to its ideal behaviour.

The third row of table 4.3 shows that if we would use a maximum semi-convexity error of
2εc+2εm, then the number of missed splits increases from 13 to 32. Figure 4.15 shows an example
of such a missed split that does not occur in case ε = εc + εm: since the sequence is split too far
away from the benchmark sequence, the least-square circle for the remaining sequence was not a
good fit and therefore no circle was detected. This missed split is not the result of an error by the
semi-convex partitioning algorithm, since for the remaining sequence there actually exists a circle
that is a good fit for that sequence. Instead the problem is caused by our specification that not
just any circle, but the least-square circle of the sequence should be a good fit. Note that such
problems may also occur when ε = εc + εm, but at a lower rate. The first row of table 4.3 shows
that for all 2360 benchmark sequences in our experiment, this error could not have occurred more
than 13 times. Therefore this “flaw” in the problem specification has an almost negligible impact
on the detector’s performance in practice.

In section 4.4.3 we can read that the only error the semi-convex partitioning can make is
that it can split off a part at the beginning or end of a maximal ε-semi-convex subsequence that
overlaps with another maximal ε-semi-convex subsequence. The length of such a overlapping part
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ε Allow Holes Semi-Convex Curvature Missed

εc + εm yes 34 3 13
εc + εm no 6 3 7

2εc + 2εm yes 2 5 32
2εc + 2εm no 0 2 27

Table 4.3: This table shows, for different cases, the number of fatal unnecessary splits in the semi-convex
partitioning step, the number of fatal unnecessary splits in the curvature-based partitioning step and the
number of fatal missed splits. Column ε shows for each case the maximum allowed semi-convexity error
used by the semi-convex partitioning step. Column “Allow Holes” shows for each case whether we allowed
benchmark sequences to have points with a distance larger than 0.3 m from the ground truth circle.
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Figure 4.15: An example of a missed split that occurs when the maximum semi-convexity error ε is set to
2εc + 2εm instead of εc + εm. As a result no circle is detected.

is expected to be small and thus the effect of this error will be limited. This expectation (which
assumes ε = 2εc + 2εm) is confirmed by the fourth row of table 4.3 where for each benchmark
sequence there exists a real world εc-circle approximation and in which none of the failed detections
were caused by the semi-convex partitioning step.

4.6.4 Detection Rate Depending on the Distance to the Central Island

The main focus of the previous subsection was to analyse how well the detector detects a central
island if it was present in the input data. In this subsection the goal is to evaluate how large the
fraction of all detected circles is, that correspond to the central island. We analyse the size of this
fraction as a function of the vehicle’s distance to the border of the central island.

We classify each detected circle as either a good detection or a bad detection. A good detection
is a circle for which at least 95% of its corresponding points have a distance of at most 0.3 m to the
ground truth circle. All other detections are classified as a bad detection. We define the distance
from the vehicle to the central island to be the distance of the vehicle rear axle’s centre (which is
3.84 m behind the laser scanner) and the border of the central island.

Figure 4.16 shows the number of detections (good and bad) as a function of the vehicle’s
distance to the central island. It also visualises the contribution of each of the laser scanner’s
layers. Figure 4.17 shows a similar plot, but then only for the number of circles that were classified
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Figure 4.16: This figure shows for each distance bin the number of detected circles, where the bars
representing the number of detected circles for the individual layers are stacked on top of each other.

as good detections. Figure 4.18 visualizes the contribution of good and bad detections to the total
number of detections.

The data visualised by figures 4.16 and 4.17 allows us to create plots like figure 4.19 that show,
for a specific layer, the good-to-total detection ratio as a function of the distance to the central
island. Such ratio can be interpreted as the probability that a detected circle is a good detection,
given the vehicle’s distance to the central island. Plots for each of the six layers can be found in
appendix B and are used for the measurement models discussed in chapters 5 and 6.

4.6.5 Error of Fitted Circles

In this subsection we analyse the characteristics of the circles classified as good detections. This is
done by deriving an error distribution for the circle’s centre and radius and a distribution for the
laser scanner points relative to the ground truth circle. For each of the one-dimensional or two-
dimensional histograms in this subsection, the distribution is represented as a probability density
distribution. This means that for a bin b the value vb of the bin is computed as:

vb =
nb

w
∑
d nd

where ni is the number of circle/points corresponding to bin i and w is the width (or area in case
of a 2D histogram) of the bins. This means that instead having bin values representing the number
of circles/points within that bin, we have a histogram with the same shape but for which the area
(or volume in case of a 2D histogram) of all bins sums to one. The reason for representing the
histograms as probability density distributions is that some of these histograms can then directly
be used as probability density distributions that are required by the measurement models in later
chapters.

Figure 4.21 shows the error distribution in the x and y direction of the circle centres and
figure 4.22 shows the error distribution of the radius. Striking is that the order of magnitude
of the radius error (being metres) is much larger than the order of magnitude of the circle fit
error allowed by the algorithm (being decimetres). This can be explained by the fact that the
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Figure 4.17: This figure shows for each distance bin the number of good circle detections, where the bars
representing the number of good detections for the individual layers are stacked on top of each other.
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Figure 4.18: This figure shows for each distance bin the number of detected circles, where the bars
representing the number of good detections and bad detections are stacked on top of each other.
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Figure 4.19: This graph shows for each distance bin the good-to-total detection ratio of laser scanner layer
0.

l1

Figure 4.20: The dark blue circle is the circle from which the measured points (red) originate. Let K be
the set of circles (the bright blue circles are a few of them) that fit to the set of measured points given a
maximum fit error. This figure shows that while the maximum fit error can be relatively small, the radius
error of a circle in K can be relatively large. Line l1 is the line orthogonal to the point in the middle of
the arc that is covered by the measured points. The circle centres of K vary mainly along this line.

algorithm fits a circle to a set of points that, instead of being distributed across the entire circle,
is only distributed across a certain arc of the circle (which spans less than half of the circle).
Consequently, as illustrated in figure 4.20, the set of circles that fit the set of points given a
maximum fitting error may show an enormous variation in their radii compared to the maximum
fitting error. Let us assume that this is a valid explanation for the large radius errors. Then the
fitted circle will be near the ground truth circle near the measured points. Since an error in the
estimated radius makes the estimated centre move away from the measured points by the same
amount from the ground truth centre (see figure 4.20), one would expect the centre error and
radius error to be strongly correlated. This expected correlation between the radius error and
centre error is confirmed by figure 4.23.

The question can be asked whether the xy-coordinate system is a good coordinate system for
analysing the centre error, since the direction of the centre error largely depends on the orientation
of the arc covered by the set of points the circle is fitted to. Let us assume that if the arc is split
in two equal size parts, the distributions of the points for these two parts are approximately
symmetric. Then, as illustrated in figure 4.20, the major part of the fitted circle’s centre error
(of which the magnitude is approximately the radius error) will be along the line l1 orthogonal
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Figure 4.21: The error distribution of the centre of circles classified as good detections.
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Figure 4.22: The error distribution of the radius of circles classified as good detections.
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Figure 4.23: This graph shows for each good circle detection the absolute centre error (i.e. the distance
between the detected circle centre and ground truth centre) and radius error.
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Figure 4.24: For each good circle detection in the left and right graph the radius error is plotted against
the centre error in x-direction and the centre error in the y-direction respectively.

to the arc at point in the middle. It therefore seems a good idea to express the centre error in a
coordinate system where one of the axes is parallel to l1. We expect the point in the middle of the
observed arc to be close to the line l2 from the sensor’s origin to the centre of the ground truth
circle. Thus l2 will have approximately the same direction as l1. We define the x′y′-coordinate
system to be a right handed Cartesian coordinate system with axes x′ and y′, where the x′-axis
is in the same direction as the vector from the sensor’s origin to the centre of the ground truth
circle.

By comparing figures 4.24 and 4.25 we see that the centre error in x′-direction is more correlated
with the radius error than the centre error in the x-direction is with the radius error. At the same
time the centre error in the y′-direction is less correlated with the radius error than the centre error
in the y-direction is with the radius error. Figure 4.26 hints that the centre error and radius error
may be decorrelated by subtracting the radius error from the centre error’s x′ component. It also
show that if the radius error is subtracted from the centre error’s x component, that there is still
a correlation with the radius error. From the above it can be concluded that the x′y′-coordinate
system is better than the xy-coordinate system in the sense that in the x′y′-coordinate system the
dependence on the radius error is isolated to only one of the components of the centre error.

Figure 4.27 shows the centre error distribution in the x′y′-coordinate system and figure 4.29
shows the distributions in the x′ and y′ direction separately. When we compare the distribution
for the centre error in the x′y′-coordinate system with its distribution in the xy-coordinate system
(figure 4.21), then we see that the error’s x′ and y′ components are less correlated than its x and
y components. Figure 4.28 shows the centre error distribution when the radius error is subtracted
from the centre error’s x′ component.

Since the x′y′-coordinate system seems to be more suitable than the xy-coordinate system to
express the circle centre error, this will be the coordinate system used for the circle centre error
in the measurement model in the following chapters.

Apart from evaluating the parameters of the detected circle it is also interesting to have a
look at the points in the laser scanner point sequence which correspond to the detected circle,
that is, those points where the circle was fitted on. We define the error d of a point to be the
distance from that point to the ground truth circle, where d is negative if the point is inside the
circle and positive otherwise. Figure 4.30 shows the distribution for d for all points of circles that
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Figure 4.25: For each good circle detection in the left and right graph the radius error is plotted against
the centre error in x′-direction and the centre error in the y′-direction respectively.
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Figure 4.26: The left and right plot show a scatter plot for all the good circle detections where radius
error is subtracted from the centre error’s x′ and x component respectively.
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Figure 4.27: The error distribution in the x′y′-coordinate system of the centre of circles classified as good
detections.
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Figure 4.28: The error distribution in the x′y′-coordinate system of the centre of circles classified as good
detections, where the radius error is subtracted from the x′ component of the centre error.



4.7. Conclusions and Recommendations for Future Research 57

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

−3 −2 −1 0 1 2 3 4 5 6 −1 −0.5 0 0.5 1 1.5 2

p
ro

b
a
b

il
it

y
d

en
si

ty

x′ error (m) y′ error (m)

Figure 4.29: The error distribution for the x′ component and y′ component of the circle’s centre error
separately (of the circles classified as good detections).

are classified as good detections. It should be noted that this distribution, of course depends on
our definition for a good detection, since we require a good detection to have at least 95% of the
points with a d-value less than 0.3 m. If we compare the centre error of the detected circle (see
figure 4.27) to the distance of each point corresponding to the detected circle, then we see that
the latter is relatively small. The distribution of d is used in chapter 6 in the measurement model
for the roundabout map verification method.

4.7 Conclusions and Recommendations for Future Research

This chapter introduced a circle detection algorithm for the purpose of detecting the roundabout
central island in a single layer of a laser scan. The computation times of an implementation of the
algorithm on a PC, indicated that the algorithm could be used in a real-time system for online
roundabout detection.

Besides evaluating the performance of the algorithm itself, also the quality of the input data
was evaluated. This was done by investigating, based on ground truth data about the central
island, whether the input point sequence contained a subsequence of points corresponding to the
central island. Such a subsequence is called a benchmark sequence. At three out of the six
evaluated roundabouts, the input data only contained a small number of benchmark sequences
(i.e. at those roundabouts the laser only measured the central island a few times). At the other
three roundabouts the number of benchmark sequences was high enough to consider the input
data to be good for the detection of central islands. We do not know why exactly the laser scanner
hardly measures the central islands of certain roundabouts, and suggest this as a topic for further
research. Furthermore the results of older experiments, with a laser scanner that differed in its
optical characteristics, showed better performance of the laser scanner measuring central islands.
This indicates that the evaluation results presented in this chapter could even be improved if the
laser scanner is optimized for measuring curbs of central islands.

An evaluation of the algorithm showed that out of the 2360 benchmark sequences in the input,
only 50 of them were not detected by the algorithm, which means that the probability of a false
negative detection is very low. This means that in 98% of the cases where the laser scanner
measured a central island, the algorithm successfully detected the central island. The causes for
those 50 undetected benchmark sequences were further investigated. The fact that the formal
specification of benchmark sequences is weaker than the specification of circles that the algorithm
must detect, seemed to be the main cause for these undetected benchmark sequences
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Figure 4.30: The distribution of d, the distance between a point and the ground truth circle, for all point
corresponding to good detections.

While the input data contained 2360 benchmark sequences in total, 3039 circles were detected
by the algorithm. This means that 78% of the detected circles did correspond to a central island.
It should be noted however that, although not every detected circle corresponds to a central
island, every detected circle is still a correctly detected circle in the input data. The good-to-total
detection rate (a detection corresponding to a central island is called a good detection) was also
found to depend on the layer of the laser scanner and the vehicle’s distance to the border of the
central island. This was further analysed and appendix B shows the results for each layer.

Future research may focus on the reduction of the number of central island false detections.
One suggestion on how this can be done is to verify a detected central island using a camera.
Since a detection consists of a sequence of points with a three-dimensional position, the positions
of these points can be projected to image coordinates. The challenge is then to develop an image
processing algorithm that can verify whether the region around the image coordinates of the
detection indeed looks like the curb of a central island.

For detected circles corresponding to the central island, the error of its parameters—the radius
and planar coordinates of the centre—were also analysed. Since only a fraction of the central
island’s border is measured by the laser scanner, the estimated radius of the detected circle can have
an error of several metres. The error of the estimated centre showed to be strongly correlated with
the radius error. In order to better model the error distribution of detected circles, a coordinate
system was introduced in which the correlation of the centre’s error with the radius error is mainly
restricted to one of the axes.

Although the error of a detected circle’s parameters may be several metres, the distance from
the measured individual points, corresponding to such a detected circle, to the ground truth of the
central island, is at most several decimetres. This means that the point sequence corresponding
to a detected circle gives a quite accurate description of the central island’s geometry at those
positions where it was measured, compared to the error of the detected circle’s parameters as a
description of the complete central island geometry.

From the above it can be concluded that the central-island detector shows very promising
results for use in sensor-based roundabout perception. Chapter 5 presents a roundabout perception
system that makes use of the central-island detector presented in this chapter.



Chapter 5

Roundabout Perception
Supported by A Priori Map Data

5.1 Introduction

In chapter 4 a method was presented to detect roundabout central islands in single-layer laser
scans. While the estimation of the central island’s geometry by this method can be relatively
precise at those parts of the central island that were covered by the laser scan, the other parts of
the central island geometry may show a large error because of the uncertainty of the estimated
radius. Furthermore, a roundabout perception system for highly automated driving should be
able to perceive all relevant elements of the roundabout as described by the roundabout model in
section 2.2. Since current state of the art in sensor-based perception does not offer us methods to
perceive all parameters of this roundabout model relative to the ego vehicle, this chapter proposes
a roundabout perception method that combines sensor-based observations with a detailed a priori
roundabout geometry from a digital map. Only some of the model’s parameters are estimated
using on-board sensor observations. The complete roundabout geometry is computed by aligning
a detailed geometrical description from an a priori digital map with the estimated parameters.
This a priori geometry describes with high precision the complete roundabout geometry except
for its global position and orientation.

Similar to the intersection perception method of Nedevschi et al. [NPM+10], the approach
presented in this chapter uses only the geometric roundabout description stored in the a priori map
to localize itself relative to the corresponding roundabout. The advantages of such an approach,
compared to other localization methods, are that no high accuracy global localization (like DGPS)
is required and that the a priori map does not have to contain additional landmarks for localization.

A preliminary version of the results in this paper was published in the proceedings of the
2015 IEEE 18th International Conference on Intelligent Transportation Systems [RB15]. The
current chapter presents an improvement over the algorithm from the paper, based on an extensive
evaluation of the central-island detector’s performance in section 4.6.

Section 5.2 discusses the contents of the a priori digital map used by the roundabout percep-
tion algorithm. The algorithm itself is explained in section 5.3. Using ground-truth data, the
performance of the algorithm is evaluated and compared with the old version of the algorithm in
section 5.4. Final conclusions and recommendations for future research are given in section 5.5.

5.2 Digital Map Data

The presented system makes use of a priori map data which consist of a regular digital map
normally used for navigation purposes, called the base map, that is extended with detailed data
about roundabouts.

59
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Figure 5.1: A schematic overview of the system’s components where the arrows represent data flow.

The base map can be seen as a graph of which the edges are road segments and the vertices
are the points where the road segments are connected. We assume that for each edge in the map,
only the centre-line geometry of the corresponding road segment is stored; information about the
individual lanes of the road segment is not assumed to be available. A roundabout appears in this
map as a cycle of edges. A flag indicates that these edges belong to a roundabout. The system
does not require the base map’s geometry to have a high accuracy. In the implementation of the
system a regular navigation map with a absolute centre-line accuracy of ±7 m is used as the base
map.

The base map is extended with a detailed description of the roundabouts in the map. This
detailed description uses the model presented in section 2.2, but without describing the global
position and orientation. That is, all geometric information is described relative to the centre of
the roundabout and the position of the centre is not represented. For each of the road connections
in the detailed roundabout description, the ID of the corresponding road in the base map is
stored. The precision of the extended roundabout data is high enough to consider the data as
exact information for our application.

Although the global position of the roundabout’s centre is not stored in the extended map data,
a rough estimate of it can be extracted from the base map. So by using the ego-vehicle position
and heading obtained via GPS we will be able to compute a rough estimate of the roundabout’s
centre relative to the ego vehicle based on the base map data. The maximum error εb of this centre
estimation, which is derived from the combination of map and GPS uncertainties, is assumed to
be known. For the implementation of the presented system εb is set to 15 m.

5.3 The Roundabout Perception Algorithm

5.3.1 Algorithm Overview

The central-island detector presented in chapter 4 estimates the position of the roundabout’s
centre relative to the ego vehicle. This algorithm was slightly modified such that in its last step it
does not try to fit a circle with an unknown radius, but instead it tries to fit a circle with the exact
radius rc that is a priori known from the digital map. If we combine the centre measurements,
generated by the central-island detector, with our a priori knowledge from the digital map about
the radii of the central island rc, truck apron rt and outer border ro, then we are able to generate
a geometric description of the central island, truck apron and circulatory roadway relative to the
ego vehicle. However in order to compute the position of the gates relative to the ego vehicle, only
knowing the roundabout’s centre is not sufficient. For that we also need to know the orientation
of the roundabout relative to the ego vehicle. To compute the orientation, we try to observe one
of the endpoints of a gate. A geometric description of the roundabout can then be computed by
first translating the detailed geometry from the digital map such that the centre coincides with
the measured centre and then rotate the geometry around its centre such that the measured gate
endpoint coincides with the corresponding gate endpoint (of the road from which the ego vehicle
is approaching the roundabout) in the map.

Since there is no known method to directly measure the position of a gate, an endpoint of a
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Figure 5.2: The algorithm’s operation stages, the transitions between them and for each stage correspond-
ing situation the ego vehicle is assumed to be in.

gate is not directly observable. The two endpoints of a gate are defined as the points where the
boundary of the lane (which is incident to the roundabout) is connected to the outer border of the
roundabout. In this chapter we assume right-hand traffic and we assume that the left boundary of
each entry lane is marked with a road marking. The left road marking of the lane, via which the
ego vehicle approaches the roundabout, is measured in images made by a front-facing camera. If
the roundabout’s outer radius (which is known from the a priori map) and the centre are known,
then the gate’s endpoint can be derived by computing the intersection of the road marking and
the roundabout’s outer border.

In case the left boundary of the entry lane is not a road marking but another type of boundary,
the road marking detector can replaced by a detector for that boundary type. The output of such a
detector will then be used in the same way as the output of the road marking detector as described
in this chapter. For example, for lanes only bounded by the curb of the splitter island, the laser-
scanner-based road curb detector presented by Kellner et al. [KHB+14] can be used instead of a
road marking detector.

The position and orientation of the roundabout are estimated by a roundabout tracker that is
based on recursive state estimation. This tracker is discussed in subsection 5.3.3. How a hypothesis
for the roundabout’s geometry is derived from this tracker is explained in subsection 5.3.4.

A schematic overview of the system’s components is provided by figure 5.1.

5.3.2 Stages of Operation

The roundabout perception system has three different stages of operation (as illustrated in fig-
ure 5.2): standby, approaching roundabout, on roundabout.

In the standby stage the system only performs a map matching on the base map using the
location provided by a GPS module with dead reckoning. After the map matching is done the
system checks whether the ego vehicle is approaching a roundabout in the base map. In case the
ego vehicle is approaching a roundabout, the tracker will be initialized using the roundabout’s
centre (relative to the ego vehicle) extracted from the base map. The system then goes into
the approaching-roundabout stage and remembers the ID of the road via which the ego vehicle is
approaching the roundabout.

In the approaching-roundabout stage the roundabout tracker is active and updates the round-
about’s state estimate using measurements from the central-island detector and road marking
detector. When, given all observations, the probability that the vehicle is on the roundabout ex-
ceeds a specified threshold pon, a transition will be made to the on-roundabout stage. Section 5.3.5
discusses how this probability can be computed.

If the system is in the on-roundabout stage, the left road marking of the lane via which the
vehicle approached the roundabout is assumed to be not observable. Because the central island
is no longer in front of the vehicle on the roundabout, the laser can no longer detect the central
island. Therefore the tracker stops updating the roundabout’s state estimate using measurements
during this stage. Instead it will only update the current estimate based on ego motion data.
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In both the approaching-roundabout and on-roundabout stages the system will return to the
standby stage if the probability that the ego vehicle is on the roundabout is below a specified
threshold pout and the vehicle is map matched to a road on which it is travelling away from the
roundabout.

5.3.3 The Roundabout Tracker

The roundabout tracker consists of two completely decoupled (Bayesian) trackers: one tracker
for the centre of the roundabout and one tracker for the left road marking of the entry lane
via which the ego vehicle approaches the roundabout. Both the centre and road marking are
tracked relative to the ego vehicle. The final roundabout estimate is computed by combining
the information provided by both trackers as described in section 5.3.4. The road marking is
tracked by the algorithm presented by Neumaier [Neu13] and Baer [BHG10]. This algorithm uses
a multi-clothoid model for the road markings and tracks them using a Kalman filter. The tracker
for the centre of the roundabout is updated by measurements of the central-island detector and is
described in the rest of this sub-section.

The tracker for the roundabout’s centre is implemented as a particle filter. Let M and E be
the random variables for the set of central island measurements and the set of ego motion data
respectively, received by the system thus far. Ego motion data consists of measurements by wheel
speed sensors and accelerometers. Let m and e be the actual received values of the set of central
island measurements and the set of ego motion data respectively (i.e. those are realisations of M

and E). Furthermore, let ~S be the random variable for the state we wish to estimate, that is the
x and y-coordinate of the roundabout’s centre. Generally a particle filter uses a set of weighted
particles to represent a probability density distribution for the state it wishes to estimate given all
information received thus far. In our application, this means that the particle filter will represent
the probability density distribution for ~S given M = m and E = e. Each particle corresponds to
a realisation of ~S and has a weight. The probability density1 p(~s | m, e) for a specific realisation

~s of ~S can be derived from the set of particles by computing the weighted particle density around
value ~s. From here on, it is assumed the reader is familiar with particle filters and the rest of this
sub-section discusses how the concept of a particle filter is applied to our problem of estimating
the centre of a roundabout. The book by Thrun et al. [TBF05] provides a good introduction to
particle filters.

When the filter is initialized (during the transition from stage standby to approaching round-
about) the particles will have equal weight and will be uniformly distributed within the circle of
which the centre is equal to the rough roundabout centre estimate from the base map and of which
the radius is equal to εb.

Let ~Z be the random variable for a new measurement. After receiving a new measurement ~z,
a particle filter updates the weight of each particle by using the measurement probability density
p(~z | ~S = ~sp), where ~sp is the state represented by the particle. In our application the measurement
is the centre’s x and y-coordinate of the circle detected by the central-island detector.

Since it is possible that the central-island detector detects a circle in the laser scanner data
that does not originate from the central island, the roundabout tracker takes into account the
possibility of such a false positive detection. This is done by introducing random Boolean variable
B, that indicates whether the measured circle corresponds to the central island. By applying the
law of total probability, the measurement probability density can be written as:

p(~z | ~S = ~sp) = p(~z | ~S = ~sp, B = true) · p(B = true | ~S = ~sp)

+ p(~z | ~S = ~sp, B = false) · p(B = false | ~S = ~sp)
(5.1)

Recall that for the evaluation of the central-island detector in subsection 4.6.4, we studied
what fraction of the detected circles corresponded to the central island. The number of detections
corresponding to the central island (i.e. the number of good detections) divided by the total

1See section 2.4 for the notation adopted in this thesis.
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number of detections, called the good-to-total detection ratio, could be used as the probability of
correctly detecting the central island, p(B = true). As can be concluded from subsection 4.6.4,
this good-to-total ratio varies over different intervals of the vehicle’s distance to the central island’s
border and over the different scan layers of the laser scanner. This resulted in the histograms of
appendix B, where for each laser scanner layer the good-to-total ratio is given as a function of the
vehicle’s distance to the central island’s border.

Since in p(B = true | ~S = ~sp) the parameters ~sp of the central island are given and its radius
is known from the map, the distance of the vehicle to the border of the central island is known.
Furthermore the system also knows in which of the laser scan layers the circle was detected.
Therefore, in order to obtain a value for the probability p(B = true | ~S = ~sp), the roundabout
tracker looks up the good-to-total detection ratio for the corresponding distance to the central
island’s border in the histogram of the corresponding layer. Note that, although the histograms
in appendix B are based on the output data of the central-island detector where it detects central
islands with an unknown radius, data based on the central-island detector detecting central islands
with a known radius resulted in similar histograms and therefore only the former histograms are
included in this thesis and are used in the experiments.

Let us turn to p(~z | ~S = ~sp, B = true), which is the probability density of measurement
value ~z given the parameters of the central island ~sp and given the fact that the measurement
originates from the central island. In case the measurement originates from the central island with
parameters ~sp, the following measurement model is used:

~z = ~sp + ~Ez (5.2)

where ~Ez is a random variable describing the measurement error for the circle centre. Note
that ~Ez is not just a number that specifies the distance between the measured centre and the
detected centre, but it is a vector. The reason for this is that the error is is not uniform in all
directions. In section 4.6.5 we concluded that probability density distribution of the circle centre’s
measurement error can be best described in the x′y′ coordinate system (that is, this coordinate

system is preferred over xy-coordinate system). Since the measurement ~z, state ~sp and error ~Ez
in equation 5.2 are described in xy-coordinates, they need to be transformed to x′y′ coordinates.
Note that this transformation depends on the value of ~sp, since the x′y′ coordinate system is
defined to be a right-handed coordinate system of which the direction of the x′-axis is equal to the
direction of ~sp. Let ~z′, ~s′p and ~E′z be the values in the x′y′ coordinates of ~z, ~sp and ~Ez respectively.
Then the measurement probability density is given by:

p(~z | ~S = ~sp, B = true) = p( ~E′z = ~z′ − ~s′p | B = true)

The probability density distribution for ~E′z (given B = true) is described by figure 5.3 which is
the result of performing the experiment of section 4.6.5 for the central-island detector configured
to detect central islands with a known radius. The distributions for the x′ and y′ component of
~E′z separately, are presented by figure 5.4.

Let us now consider p(~z | ~S = ~sp, B = false) in equation 5.1 which is the probability density
measurement value ~z given the parameters of the central island ~sp and given the fact that the
measurement does not originate from the central island. The central-island detector will discard
all detected circles for which the centre deviates more than the map uncertainty εb from the centre
known from the digital map. This means that the space of possible centre measurements is a disk
with radius εb. If B = false (i.e. the detector produced a measurement not corresponding to the
central island), then we assume that each centre measurement within the measurement space is
equally likely. That is:

p(~z | ~S = ~sp, B = false) = 1/(πε2
b)

Now equation 5.1 can be rewritten in a form where all required probability (density) values
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Figure 5.3: The error distribution in the x′y′-coordinate system of the centre of circles classified as good
detections, for the detector that detects circles with a known radius.
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(of the circles classified as good detections), for the detector that detects circles with a known radius.
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are explicitly known:

p(~z | ~S = ~sp) = p( ~E′z = ~z′ − ~s′p | B = true) · p(B = true | ~S = ~sp)

+
1− p(B = true | ~S = ~sp)

πε2
b

(5.3)

where ~z′ and ~s′p are the values in the x′y′ coordinate system of measurement ~z and state ~sp
respectively.

For state prediction, the particle filter uses information about the ego vehicle’s motion based
on measurements by wheel speed sensors and accelerometers. The ego motion is modelled as a
translation and a difference in yaw angle, having a zero-mean normally distributed error of which
the variances are proportional to velocity and yaw rate respectively.

5.3.4 Roundabout State Hypothesis Derivation

After a number of measurement updates the tracker’s probability density distribution of the round-
about’s centre will converge towards a single position. This convergence has been confirmed by
experimental evidence. Consequently a single peak will show up in the distribution that can be
interpreted as a single hypothesis for the position of the centre with an uncertainty.

The estimate of the road marking is only an estimate for a certain part of the marking. Only
if this estimated part includes the gate endpoint, the road marking estimate provides information
about the roundabout’s orientation. The system does not know in advance whether this part
reaches until the gate endpoint. However, if we have a good estimate of the roundabout centre
then we are able to check whether the road marking estimate reaches the border estimate of the
roundabout. If it does reach the border then the road marking estimate can be used to estimate
the orientation of the roundabout.

Let µc be the expectation of the centre distribution (i.e. the distribution’s first moment) and
εµ be a parameter specifying the maximal acceptable deviation of µc to the true roundabout
centre c. Then we say that µc is a good estimate of the roundabout centre if the probability
that |µc − c|≤ εµ is above a specified threshold pc,good. This probability can be computed in a
way similar to the computation of the probability that the ego vehicle is on the roundabout as
explained in section 5.3.5. In case µc is a good estimate for the centre, it will be used as the centre
estimate ĉ of the output roundabout hypothesis, where the variance is set to the distribution’s
variance σ2

c (i.e. the distribution’s second moment).
Given the estimate of the centre, the roundabout’s outer radius ro (known from the digital

map) and an estimate of the road marking provided by the road marking tracker, the system
computes the point pi where the road marking intersects the outer border of the roundabout.
Recall that when going from the standby to the approaching-roundabout stage, ID (in the map) of
the road via which the ego vehicle is approaching the roundabout was stored. The gate description
corresponding to the entry lane of the road with this ID is extracted from the extended map data.
In this gate description the position pm of its left endpoint is described in the local coordinate
system of the extended map data.

The position and orientation of the roundabout data extracted from the digital map are aligned
in such way that the centre coincides with the estimate of the centre ĉ and pm coincides with the
estimate pi of the left endpoint of the gate. The aligned roundabout model is then the estimate
of the roundabout relative the ego vehicle and will be the system’s output.

5.3.5 Computing the In-Roundabout Probability

As explained in section 5.3.2, the decision to make a transition to the on-roundabout stage or
the standby stage is based on the probability that the ego vehicle is inside the roundabout. This
subsection shows how this probability can be computed from the roundabout’s centre probability
density distribution maintained by the tracker.
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Let random Boolean variable A indicate that the ego vehicle is on the roundabout and let m
and e be respectively all measurements and ego motion data until the current time instant. Then
p(A = true | m, e), which is the probability that the ego vehicle is on the roundabout given m and
e, is used to decide whether to make the transition to the on-roundabout stage or standby stage.

For simplicity we say that the ego vehicle is on the roundabout if the centre of its rear axle,
which is the origin of the ego vehicle’s coordinate system, is inside the outer-border circle. This
means that if the radius ro of the outer border and the centre relative to the ego vehicle are known,
it can be checked whether the vehicle is on the roundabout. Radius ro is known a priori and a
probability density distribution for the centre is maintained by the centre tracker. Since A = true
is equivalent to |~S|≤ ro (meaning that the origin is inside the circle with centre ~S and radius ro),
it follows that:

p(A = true | m, e) = Pr(|~S|≤ ro | m, e)
=

∫
T
p(~s | m, e) ~ds

(5.4)

where T = {~s′ : |~s′|≤ ro} is the space of centre states for which the origin is inside the round-
about’s outer border. Here p(~s | m, e) is the probability density for the roundabout’s centre ~s
given all measurements m and ego-motion data e until the current time instant. This conditional
probability density distribution for the centre is maintained by the roundabout centre tracker
which is a particle filter representing the distribution by a particle set Q. As a result, the integral
in equation 5.4 can be approximated by summing the normalized weights of all particles of which
the distance to the origin is at most ro:

p(A = true | m, e) = W−1
∑

p∈{p′∈Q : |~sp′ |≤ro}

wp (5.5)

where ~sp is the state (i.e. roundabout centre) corresponding to a particle p, wp is the weight of a
particle p and W is the total weight of all particles in Q.

5.4 Evaluation

This section evaluates the presented roundabout perception method. As indicated in a previous
publication [RB15] about this perception method, the error made by the road marking detector
directly translates to the error of the estimated roundabout orientation in the output of the
complete system. Since the development of a road marking detector is outside the scope of this
work we omit the analysis of the roundabout orientation estimation. A detailed analysis of the
performance of the central-island detector can be found in section 4.6. Consequently, the focus of
this section is on the estimation of the roundabout’s centre.

Furthermore the performances of the tracker as presented in the previous publication [RB15]
(referred to as the old tracker) is compared with the performance with the tracker as presented in
this thesis (referred to as the new tracker). The old tracker uses a zero-mean bivariate Gaussian
for the centre error probability density distribution, whereas the new tracker uses a more generic
way to represent the probability density distribution in form of a two-dimensional histogram.
Additionally the new tracker uses a correct-measurement probability that depends on the distance
to the central island’s border and scan layer, while in the old tracker this is a constant probability.

In section 4.6, we found out that the central-island detector’s input data does not for every
roundabout or gate contain sufficient point sequences that are on the central island. Therefore,
as in the evaluation of the central-island detector, only the following roundabouts where selected
for this evaluation: Casino, Gaimersheim Large and Lana Grossa gates 1 and 2. At each of the
gates of these roundabouts three new recordings were made under the same conditions (i.e. no
occlusions by other vehicles and a velocity of approximately 20 km/h) as in section 4.6. This
means that we have two sets of recordings: those of section 4.6 and those of this section. The
recordings of section 4.6 were used to derive the required probability density distributions for the
measurement model, and can therefore be called the training set. The additional recordings made



5.4. Evaluation 67

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

3.5 4 4.5 5 5.5 6 6.5 7

(m
)

time (s)

ed
ec,old

σc,old

ec,new

σc,new

Figure 5.5: This graph shows for one of the recordings where gate 1 of the Gaimersheim Large roundabout
is approached, the detector’s circle centre error ed, the tracker’s centre error ec,old and ec,new, and the
standard deviation of the tracker’s estimation σc,old and σc,new. Subscript old is used to indicate the
results of the old tracker and subscript new to indicate the results of the new tracker.

for this section were used for evaluation of the roundabout perception system, and can therefore
be called the test set.

Since the central-island detector used in this chapter detects circles with a known radius,
unlike the version of the detector presented in chapter 4 where the radius is unknown, the prob-
ability density distribution for the detected centre error is different from the distribution shown
in section 4.6. Figure 5.3 shows the probability density distribution for the central-island-with-
known-radius detector. Since there is no significant difference in the number of total and successful
detections between the detector used in this chapter and the one of chapter 4, the detection his-
tograms for the number of detections of figures 4.16 and 4.18 as well as the probability histograms
in appendix B, also hold for the detector used in this chapter. Hence, the probability histograms
of appendix B are used for the correct-detection probability p(B = true | ~s).

Based on the same method as in section 4.6, a ground truth (for the geometry of the round-
about relative to the vehicle) was computed for each time instant the laser scanner produced a
measurement.

We use symbol ed for the error of a detected circle, which is the distance from its centre to
the centre of ground truth roundabout. For a specific instant of time, symbol ec is used to denote
the error of roundabout centre as estimated by the particle filter, which is the distance from
the estimated centre to the centre of ground truth roundabout. Figure 5.5 shows for one of the
recordings at gate 1 of the Gaimersheim Large roundabout, the performance of the detector and
both old and new tracker. Besides the error ec it also shows the standard deviation σc of tracker’s
probability density distribution for the central island’s centre, which is computed by the algorithm
itself. One can clearly see that for this recording the new tracker outperforms the old tracker.

Instead of having a plot like figure 5.5 for each recording, the tracker error of each recording is
summarized by a box plot (which visualises the quartiles of the tracker error). The tracker error
is computed each time the tracker performs an update, which is at each time instant where the
laser scanner produced a measurement. The box plot of each single recording is based on the
updates that were done after the vehicle’s rear axle reached the distance of 20 m to the border of
the central island. That is, we evaluate the tracker in the case where the vehicle is at most 20 m
away from the border of the central island.

Figure 5.6 shows the box plots for the recordings of the three roundabouts. This figure both
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include box plots for the old tracker and the new tracker. In most cases the new tracker shows
a better performance than the old tracker. However for gates 0 and 2 of the Casino roundabout,
the new tracker performs worse than the old one.

An explanation for the bad performance at Casino gate 0, can be found in figure 5.7, which
shows for Casino gate 0 the distribution of the central-island detector’s error based on the training
data set. When we compare this with the detectors error distribution over all roundabouts in
figure 5.4, we see that weight of the error in y′ direction is more shifted to the left. Figure 5.8
shows, that indeed the tracker performs better at Casino gate 0 if the tracker uses a centre error
distribution specifically for that gate. Similar arguments hold for the bad performance at gate 1
of the Casino roundabout.

From the data from gate 0 of the Casino roundabout, it can be concluded that the error
distribution of the detected circle centre based on the data for all roundabouts may not be a
representative distribution for the the centre error at individual gates. In other words: the error of
the detected circle centre seems to depend on the roundabout and gate the vehicle is approaching.
If better results are desired, then the property of the roundabout which causes these distributions
to be different should be identified. Once this source is known it can be incorporated into the
sensors model which then can produce better probability density distributions.

An alternative to finding the source for the different distributions and constructing a more
detailed sensor model, is to learn the detected centre error distribution for each individual round-
about gate. This may be, for example, done during the mapping process of the roundabout, where
besides measuring the geometry of the roundabout, the behaviour of the laser scanner and central-
island detector is also analysed. However such an approach may be very time consuming during
the mapping process and has to be done again every time the sensor changes. It is also possible to
construct a distribution for each individual gate using data from a car fleet, that is equipped with
a laser scanner, the presented roundabout perception system and another method that localizes
itself relative to the roundabout map. Both the localization of the roundabout perception system
and second localization method may have a high uncertainty, but by fusing them a more accurate
localization can be achieved. This allows us to afterwards estimate the error of each circle that
was detected and by that an estimation for the error distribution can be made. Such a system
could be a topic for future research.

As indicated in section 4.6, previous experiments with an older version of the laser scanner
resulted in more benchmark sequences at the Lana Grossa roundabout. Not only the number of
benchmark sequences was higher, but also the centre errors of detected circles were smaller than
with the newer version of the laser scanner. The paper about the old algorithm [RB15] presents
the evaluation results of the old tracker using this older laser scanner version. This evaluation was
done at the Lana Grossa roundabout with exactly the same implementation and parametrisation
of the old tracker and detector as in this chapter. Since the circles detected with the central-island
detector, in combination with the older laser scanner, have a smaller error compared to the newer
laser scanner, the evaluation in [RB15] of the tracker also showed a better performance than the
evaluation results in this chapter. In [RB15] the error of the centre estimation at gates 1 and 2 of
the Lana Grossa roundabout was most of the times below 0.30 m, whereas with the newer laser
scanner the error at gate 1 is well above 0.30 m (even all medians are above 0.40 m).

Unfortunately the older version of the laser scanner was not available any more at the time
the experiments for this chapter were done. However the few experiments that were done with the
older laser scanner show that a better performance than presented in this chapter can be achieved.

5.5 Conclusions and Recommendations for Future Research

This chapter proposed a perception algorithm that estimates the parameters of a roundabout rela-
tive to the ego vehicle. The perception algorithm combines sensor-based observations of the central
island and road markings of the entry lane with a geometric roundabout description known from
an a priori digital map. The a priori geometry does not describe a global position or orientation
and the system works with regular GPS data.
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Figure 5.6: This figure shows for each recording a box plot for the error of the estimated roundabout
centre, during the time the vehicle was within the 20 m distance range of the central island’s border.
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Figure 5.7: For gate 0 of the Casino roundabout, this graph shows the distribution for the x′ component
and y′ component of the circle’s centre error separately (of the circles classified as good detections), for
the detector that detects circles with a known radius.
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Figure 5.8: This graph shows for one of the recordings where gate 0 of the Casino roundabout is ap-
proached, the detector’s circle centre error ed, the tracker’s centre error ec,new and ec,cas, and the standard
deviation of the tracker’s estimation σc,new and σc,cas. Subscript new is used to indicate the tracker re-
sults of the new tracker where the circle centre distribution was used that is based on statistics over all
roundabouts. Subscript cas is used to indicate the results of new tracker with the circle centre distribution
based on statistics for specifically gate 0 at the Casino roundabout.



5.5. Conclusions and Recommendations for Future Research 71

The proposed algorithm (referred to as the “new algorithm”) is an evolution of the algorithm
(referred to as the “old algorithm”) proposed in our initial paper [RB15]. One of the differences is
that in the new algorithm the measurement model uses a generic error distribution for central island
detections, instead of a zero-mean bivariate normal distribution. Using roundabout ground truth
data, the performance of the old and new algorithm were compared in an evaluation at ten different
entry gates of three different roundabouts. Overall the new algorithm showed an improvement over
the old algorithm with the exception of two of the gates. At those two gates a worse performance
is caused by the fact that the error distribution of the detected central island centre that is
based on the statistics over the population of all ten roundabout gates, is not representative for
error distributions at those two individual gates. Further experiments showed improved results
if a distribution based on statistics for the individual gate was used in the measurement model.
Collecting statistics for each individual roundabout gate where we want to drive can be a very time
consuming task and can decrease the practicality of the proposed method compared to the case
where one error distribution is representative for all roundabout gates. Alternatively, a better
understanding of the laser scanner and which aspects at the roundabout have an influence on
the measurement errors, might allow us to construct a more generic measurement model that is
representative for all gates at all roundabouts.

For all test runs the median error, from the moment where the vehicle was 20 m removed from
the central island while approaching it, of the estimated central island centre was at most 0.4 m.
The experiments with the old algorithm published in the initial paper [RB15] were done with
an older version of the laser scanner of which the optics were optimized to detect points on the
road. These previous experiments showed a much smaller error of the estimated centre, compared
to the experiment results for the old algorithm in this chapter. It is therefore very likely that
the new algorithm will give much better results than the results presented in this chapter, if it
is used in combination with a laser scanner that has been optimized for measuring points on the
road. Overall it can be concluded that the presented roundabout perception method shows very
promising results for use in automated driving.

Suggestions for future research are:

� Improving the design of the laser scanner such that it better measures the central island,
like the old version of the laser scanner that was used in previous tests, and performing with
this laser scanner new evaluations of the proposed roundabout perception method.

� Developing a complete automated driving system that integrates the proposed roundabout
perception system. Closed-loop tests of such a system can be done to investigate the influence
of the perception system on the overall system performance.

� Extending the proposed algorithm by integrating sensor observations of more environment
elements like, for example, the road curbs of splitter islands or the marking of the outer
border.

� Investigating the behaviour of the laser scanner at central islands. A better knowledge about
the laser scanner can help us in identifying the major factors of a roundabout that influence
the different characteristics of central island measurement errors among different roundabout
gates. Such knowledge could then be incorporated into the measurement model to improve
the system’s performance.
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Chapter 6

Map Verification

6.1 Introduction

Future highly automated vehicles may require a priori digital maps for information about envi-
ronment elements that cannot be perceived by purely sensor-based methods. In such cases the
correctness of the map must be known to the system in order to achieve the high level of robust-
ness that is required for highly automated driving. This chapter focuses on the verification of a
priori digital maps for this purpose. This chapter should be seen as an initial exploration of the
thus far unstudied field of map verification for automated driving. It does not present a ready-to-
use solution, but identifies some important aspects of and requirements for map verification and
investigates a possible way to model the verification problem.

Section 6.2 first discusses the major reasons that make map verification necessary, and how
the outcome of a map verification could be used by an automated driving system. From this some
major requirements on a map verification system are derived.

The rest of this chapter investigates a possible model for map verification. Section 6.3 gives a
formal definition of the map verification problem. In section 6.4 a probabilistic map verification
method is proposed based on the principles of recursive state estimation, that depends on a certain
kind of conditional independence between the measurements. Although the assumption of this kind
of conditional measurement independence is commonly made in the field of probabilistic recursive
state estimation, it is not directly obvious whether in this case it is a valid assumption. This
chapter shows that under this assumption, one can formulate a mathematically elegant method
to verify the contents of a digital map, that seems rather intuitive. An implementation of the
proposed model for the verification of mapped roundabout central islands, that uses the output
of the central island detector of chapter 4, is presented in sections 6.5 and 6.6. Based on this
implementation, the map verification model is analysed in section 6.7. This analysis shows that
the assumption of conditionally independent measurements is invalid and is one among other
reasons that lead to undesirable results.

6.2 Requirements on Map Verification

Let us first have a look at why a priori map data and its verification will be necessary for the
perception systems of highly automated vehicles. As explained in chapter 1, a priori map data
will be needed to obtain information about environment elements that cannot be fully perceived
by sensor-based methods. There can be several reasons why an environment element cannot be
perceived using sensor-based methods:

� An algorithm for its perception exists, but it is too computationally expensive for a real-time
implementation in a (production) vehicle.

� An algorithm exists but its output is not accurate enough.
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� The accuracy of the sensors is not sufficient.

� There exists no known algorithm at all.

It is possible that an environment element can be robustly perceived by a sensor-based method,
but only under certain favourable conditions (e.g. the system only works during day time, when
there are no hard shadows and it does not rain). If a perception system wants to use a priori
map data for those elements under the conditions where they cannot be perceived by sensor-based
methods, then also under those conditions the correctness of the map has to be verified.

For the reasons just mentioned, perceiving an environment element may not always be possible.
In cases where perception is impossible, not sufficiently accurate, or too uncertain, the driving
system needs additional data about the environment element. A digital map can provide this.
However, the system should not assume that the map is always correct and fully accurate: the
map could be outdated, and there could be temporary changes in the environment that are not
reflected in the map. Moreover, localization in the map is also subject to uncertainty. Thus a
robust highly automated driving system needs to deal with sensor data and a priori map data in
an integrated manner: if possible, a relevant environment element is perceived purely based on
sensor data, and otherwise the perception of the environment element will be based on map data
of which the correctness is verified by sensor data.

When the system discovers that a part of the map is incorrect, then the area covered by this
incorrect part will be a “blind spot” for the system if it can neither be perceived by sensors nor
by the map. Appropriate action must be taken in case of such blind spots. It should be noted
that the possibility of having unwanted blind spots in perception is not restricted to the use of a
priori map data. For example, sensors can be broken and as a result deliver incorrect data about
the environment. A highly automated driving system should also be able to cope with this kind
of failure and therefore handling blind spots in perception is a problem that needs to be solved
regardless of whether a priori maps are used or not. Plausible ways for the system to handle blind
spots due to incorrect map data, are:

� Choose a driving behaviour in which the incorrect part of the map becomes less relevant.
For example, if on a three-lane road the right most lane is incorrect in the map, but the
other lanes are correct, then the system might plan a trajectory over the left most lane.

� If in a certain region in the map only a part of the map data is incorrect, use the data of
the map part that is correct together with sensor measurements to perceive the part of the
environment that corresponds to the incorrect map part. That is, a priori map data that is
verified to be correct supports a sensor-based method to perceive the area of the environment
corresponding to the incorrect part of the map.

� Choose a different driving strategy (e.g. drive slower or make a wider turn) that allows the
perception system to perceive the element using sensors only. Certainly this option may
work in only a few specific scenarios and might cause less favourable (e.g. less comfortable)
behaviour for the passengers of the vehicle, but it may prevent the system from entering a
fall-back mode.

� If no other options are left to guarantee safe driving behaviour, request the human driver to
take over control of the vehicle (in case of a highly automated vehicle) or bring the vehicle
into a safe state (in case of a fully automated vehicle), based on the map data that can be
verified and based on sensor data.

It may also be possible that the map verification method cannot decide whether a part of the
map is correct or not. It will be a safe choice to handle such a part of the map in the same
way as if it was incorrect. If the area of which the correctness could not be verified is relatively
small, then the system may assume that the map is correct and use it for behaviour planning as
long as safety can be guaranteed based on sensor data. For example, consider the case where the
correctness of the ego lane can be verified up to 20 m in front of the vehicle and for the range from
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30 m to 40 m of the vehicle, while the correctness for the range from 20 m to 30 m is unknown.
Then the system may plan its trajectory on the ego lane up to 40 m while assuming the map’s
description for the part from 20 m to 30 m is correct. However, the system should only do this if
it can guarantee, based on sensor data, that it will travel over a smooth surface, the trajectory is
free of static obstacles and it will not collide with other vehicles. While doing this, the possibility
that the map is incorrect should still be considered for prediction of the behaviour of other traffic
participants.

The range of possibilities to handle incorrect map data obviously depends on the level of detail
in which the map verification method can make statements about the correctness of the map.
Therefore a map verification method should be as specific as possible about the location of a map
error. As a trivial example, it would not be desirable if the verification method would report the
entire map to be incorrect when it concludes that some specific part of the environment is not
correctly described by the map. Instead, it should explicitly report those environment elements
that are falsely described by the map. This way the correct part of the map is still usable for
the system. If the geometry of a single environment element is spread over a large distance then
a verification system must be able to identify those parts of the geometry that are incorrect. A
useful resolution at which parts of a geometry are separately verifiable must be chosen, such that
it allows the behaviour planning system to generate safe and robust behaviour in case of a map
error. Furthermore it can be dangerous to classify an environment element or a part of it as correct
if only a part of it could be verified based on sensor data. For example, it may be dangerous to
conclude that the road marking up to 50 m in front of the vehicle is correct while the sensors only
have a visibility range up to 20 m. In such case it might be useful to only classify the correctness
of the part of the road marking up to 20 m as correct and the rest of it as unknown, or to classify
the correctness of the complete road marking as unknown in case the verification resolution is
chosen to be more than 20 m.

The topic of localization should also be considered within the map verification problem. Not
only is localization of the ego vehicle in the map necessary to describe the a priori map data
relative to the vehicle, but it will also be crucial for verifying the map using sensor data. If the
map-relative localization is wrong, then a verification method may falsely classify map data as
incorrect. As explained in section 1.3.3 localization purely based on GNNS systems may not be
sufficient for automated vehicles and therefore many localization techniques rely on landmarks
in the map. Consequently the problems of map verification and map-relative localization cannot
be treated separately, since map verification relies on localization and localization relies on the
correctness of the map data.

From the above discussion the following requirements can be formulated for a map verification
system:

� The verification method should not be based on the comparison of the map description of an
environment element and the description of this environment element as the result of sensor-
based perception (i.e. the method should not require sensor-based perception to perceive an
environment element).

� The map description of an environment element or a part of it may only be classified as
correct if the correctness of that complete element or its part can be verified based on sensor
data.

� The verification method should be able to identify the environment elements that are incor-
rectly described by the map.

� In case the geometry of an environment element is spread over a large geographic distance,
then the verification method must be able to identify errors in this geometry up to a certain
resolution.

� In case the verification system cannot be certain about the correctness of an environment
element description by the map, then it should express this uncertainty in its output.
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� The map description of an environment element must be verifiable under all conditions (e.g.
weather, velocity, day/night) where the automated driving system uses the map data for
perception.

� The interdependence between the problems of map verification and map-relative localization
must be taken into account.

The verification model presented in this chapter describes how a certain part of an environment
element can be verified. In the description of this model, we assume for simplicity that environment
elements are not subdivided in parts. Whether the above requirements are satisfied depends on the
system in which the model is integrated. For example, whether correctness can be verified early
enough does not depend on the verification model but on the used sensors, operating conditions
of the system, behaviour planning algorithms, etcetera. Since the presented verification model is
not intended to offer a complete solution, but more of an initial step towards a solution that we
want to evaluate, the verification problem is simplified by assuming it is independent from the
localization problem.

6.3 Problem Statement

Let us consider the verification of one environment element described by the a priori map, based on
measurements on environment elements of the same type. For better readability, in all following
text when we talk about the correctness of a map, then we do not mean the correctness of the
complete map, but the correctness of the description by the map of a single environment element.
Similarly, when we talk about the verification of the map, we mean the verification of the map’s
description of a single environment element.

In our problem statement we assume that the map describes the geometry of each environment
element relative to the ego vehicle. This means that we assume that the ego vehicle has been
localized relative to the map and that there is no uncertainty about this localization.

First we specify what we mean by the correctness of a map. Let S be the parameter space
used to model the element of concern in the a priori map. Let e be an environment element that
is described by the a priori map. Instead of specifying a single element of S in order to describe e,
the map specifies a set of possible values A ⊆ S that environment element e may have. Correctness
of the map is defined such that the map is correct in relation to e if and only if there exists an
environment element with parameters xr in the real world such that xr ∈ A.

Typically, the set A is not described explicitly in the map for each environment element indi-
vidually. Instead, each element is described by the mean value of all elements in A and a maximum
deviation from that mean value. This maximum deviation may be the same for all map elements
of a certain type and in such cases it only has to be specified once for the whole map. However,
in cases where the uncertainty about the parameters of map elements is not constant across the
map, the set A has to be described for each map element. For the discussion in this section it
is necessary that each element in the map has a set A, but it is irrelevant how these sets are
described.

A measurement can be the direct output of a physical sensor or be the result of a process
that processes the signal produced by a physical sensor. For example, a laser scanner produces a
sequence of range-bearing tuples. This sequence can be used as a measurement for the verification
of central islands, but it is also possible to let the central island detector of chapter 4 process this
sequence and to use the output of this detector as a measurement. Note that using the output of
the central island detector does not contradict with the requirement that map verification should
not be based on comparison: a detected circle does not necessarily correspond to a central island,
and even if it does, it may not provide a sufficiently accurate description of the central island.
Another example is the light-intensity image produced by a camera. This image can be used as a
measurement for the verification of lane boundaries, but it is also possible to let an edge detector
process this image and to use the set of detected edges as a measurement.
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In this chapter we consider time to be discrete, where at each time instant there is exactly one
measurement and the first measurement is done at time zero. In case a process produces more than
one measurement based on a single sensor measurement (e.g. the central island detector detects
two circles in a single point sequence), those measurements are considered to be measurements
at different subsequent time instances. The sequence M0:t = [Z0, Z1, . . . , Zt] is used to represent
the random variables of all measurements done until the current time t, where Zi is the random
variable for the measurement at time i.

The goal of a map verification process is to compute the probability that the map is correct
given all the measurements thus far. More formally, let C be the random Boolean variable indi-
cating whether the map description of environment element e is correct. (Note that C depends
on the element environment element e, but we simply write C instead of C(e) since the element e
is fixed at this point.) To verify the correctness of element e in the map, we now need to compute
the following probability:

p(C = true | m0:t) (6.1)

where m0:t is the sequence of actually measured values (i.e. it is a realisation of M0:t).
Let random variable Xz be the parameters of the real-world environment element that induced

the latest measurement (note that this does not have to be the same element as described by the
map). We assume that the latest measurement Zt is conditionally independent of all previous
measurements M0:t−1 given the element parameters Xz. That is, for each realisation zt, m0:t−1

and xz of Zt, M0:t−1 and Xz respectively, we have:

p(zt | xz,m0:t−1) = p(zt | xz) (6.2)

Such a measurement independence can be assumed in cases where the measurement Zt is a function
of the element parameters Xz plus an error term Et (for which all the distribution parameters are
known) that is independent of element parameters Xz or previous measurements:

Zt = g(Xz) + Et

where g is some function. This is commonly the case for a hysteresis-free and calibrated measure-
ment device, and therefore the validity of assumption of equation 6.2 is not questioned here.

Although in this chapter the assumption of equation 6.2 is not questioned, this chapter does
investigate the validity of another assumption of conditional measurement independence; namely
the assumption that, given the correctness c of the map (which can be true or false), the latest
measurement Zt is conditionally independent of all previous measurements M0:t−1:

p(zt | c,m0:t−1) = p(zt | c) (6.3)

Conditional measurement independencies like these are commonly assumed in probabilistic recur-
sive state estimation, as indicated by Thrun et al. [TBF05], where in our case the correctness C
of the map is the state to be estimated.

The goal of the presented verification method is to compute the map correctness probability
as in equation 6.1 under the assumptions of conditionally independent measurements as in equa-
tions 6.2 and 6.3. The goal of the analysis is to find out whether, in practice, the assumption of
equation 6.3 is valid, and what the effects on the performance verification model are in case the
assumption does not hold.

6.4 A Generic Probabilistic Map Verification Model

The goal of the map verification process is to estimate whether the map is correct (C = true) or
not (C = false) based on a series of measurements m0:t = [z0, z1, . . . , zt] until time t. That is, the
map verification process must compute the probability

p(c | m0:t)
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for the two possible realisations of C: c = true and c = false. This conditional distribution of C
can be computed by Bayesian estimation. That is, from the distribution p(c | m0:t−1) based on
all previous measurements the distribution can be recursively updated when including the latest
measurement zt:

p(c | m0:t) = p(c | m0:t−1, zt) =
p(zt | c,m0:t−1) · p(c | m0:t−1)

p(zt | m0:t−1)

Now if we assume that the latest measurement Zt is conditionally independent from all previous
measurements M0:t−1 given state C, we have:

p(c | m0:t) = ηt · p(zt | c) · p(c | m0:t−1) (6.4)

where ηt = p(zt | m0:t−1)−1 is a constant that does not depend on c, which can be computed by
normalizing the distribution for C (i.e. solving p(C = true | m0:t) + p(C = false | m0:t) = 1 for ηt
using equation 6.4). Here p(c | m0:t−1) is known from the distribution that was computed before
knowing the latest measurement and p(zt | c) is the probability density for measurement value zt
given the value c for the state C. Based on the problem statement in section 6.3, we will now
derive an expression for the probability density p(zt | c). From now on we will omit the subscript
of zt and use z instead to simplify notation.

Let us first consider p(zt | c) for the case where the map is correct, that is, c = true. In this
case there exists an environment element with parameters x in the real world such that x ∈ A. Let
xr be such an environment element. Although there exists a real-world environment element that
fits the map description, it may be possible that the measurement originates from a different real-
world environment element. We introduce a random Boolean variable O that indicates whether
measurement z originates from element xr. Then, by the law of total probability, we can write:

p(z | C = true) = p(z | C = true, O = true) · p(O = true | C = true)
+ p(z | C = true, O = false) · p(O = false | C = true)

(6.5)

Let us consider the case where O = true and let Xz be the random variable for the parameters
of the real-world element from which measurement z originates. Then p(z | C = true, O = true)
can be written as:

p(z | C = true, O = true) =

∫
S

p(z | xz, C = true, O = true) · p(xz | C = true, O = true) dxz

We assume that given the measurement’s origin, measurement Z is independent of C and O, that
is we assume p(z | xz, c, o) = p(z | xz) for any z, xz, c and o. Note that the distribution p(z | xz)
is typically given by the measurement model of the sensor/detector. This gives us:

p(z | C = true, O = true) =

∫
S

p(z | xz) · p(xz | C = true, O = true) dxz (6.6)

Because Xz ∈ A when C = true and O = true, the probability density p(xz | C = true, O =
true) = 0 if xz /∈ A. So the integral over parameter space S in equation 6.6 reduces to an integral
over A:

p(z | C = true, O = true) =

∫
A

p(z | xz) · p(xz | C = true, O = true) dxz

Let V be the set of parameters of all elements that may be observable. Also here Xz ∈ V when
C = true and O = true, and therefore p(xz | O = true, O = true) = 0 if xz /∈ V . The integral can
thus be further reduced to:

p(z | C = true, O = true) =

∫
A∩V

p(z | xz)p(xz | C = true, O = true) dxz (6.7)

If the map and sensor model provide no further information about a probability density distribution
for the parameters xr of element e, then we assume each possible value for xr within A∩V equally
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likely with probability density γA∩V (here γA∩V is the reciprocal of the Lebesgue measure of
A ∩ V ):

p(z | C = true, O = true) = γA∩V

∫
A∩V

p(z | xz) dxz (6.8)

Before continuing to present the verification model, a note must be made on the choice for a
uniform distribution for the parameters of Xz inside A∩V . This choice is based on the principle of
indifference. As described by Keynes [Key21]: “The Principle of Indifference asserts that if there is
no known reason for predicating of our subject one rather than another of several alternatives, then
relatively to such knowledge the assertions of each of these alternatives have an equal probability.
Thus equal probabilities must be assigned to each of several arguments, if there is an absence
of positive ground for assigning unequal ones.”. Care should be taken however when applying
this principle and especially in the case of continuous parameters. Namely, the assumed uniform
probability density distribution for Xz depends on the choice of parameters used to model the
relevant quantities of the element Xz. Keynes illustrates this by the following example. Consider
a probability density distribution of the specific volume of a given substance, that is known to
lie within a given range, but no further information is known that might indicate what the value
of the specific volume can be. Based on the principle of indifference the probability density can
be chosen to be uniform within that range. Now consider the substance’s density. If v is the
specific volume, then 1/v is the density. This means that if the probability density distribution
for the specific volume is uniform, that the probability density for the density is not uniform.
However according to the principle of indifference, the distribution for the density should also be
uniform. We see in this case that two measures (or models if you want) of the same objective
quantity, yield different probability density distributions by applying the principle of indifference
for those measures. The goal of this thesis is not to provide a solution to this problem, which seems
inevitable in the application of probability theory when prior probability (density) distributions
have to be chosen. One should be aware of the existence of this problem and, while applying
the presented verification model, one should carefully select a parametrization for Xz such that a
uniform distribution for it can be justified.

Let us now consider the case where O = false in order to evaluate the second term of equa-
tion 6.5. This term can be written as:

p(z | C = true, O = false) =

∫
S

p(z | xz, C = true, O = false) · p(xz | C = true, O = false) dxz

Since Xz ∈ V \ A when C = true and O = false and Z is conditionally independent of O and C,
the above equation can be rewritten to:

p(z | C = true, O = false) =

∫
V \A

p(z | xz) · p(xz | C = true, O = false) dxz (6.9)

Since we have no further knowledge about the possible values for the measurement’s origin, we
assume each value within V \A equally likely with probability density γV \A:

p(z | C = true, O = false) = γV \A ·
∫
V \A

p(z | xz) dxz (6.10)

Now let us consider the case where the map data is incorrect, that is C = false. Similar to
above, the measurement probability density for this case can be written as:

p(z | C = false) = γV \A ·
∫
V \A

p(z | xz) dxz (6.11)

By combining equations 6.5, 6.8, 6.10 and 6.11, we get the following expression for p(z | c) in
equation 6.4:

p(z | c) =


p(O = true | c) · γA∩V ·

∫
A∩V p(z | xz) dxz

+ p(O = false | c) · γV \A ·
∫
V \A p(z | xz) dxz

if c = true

γV \A ·
∫
V \A p(z | xz) dxz if c = false

(6.12)
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This concludes the formulation of the generic probabilistic map verification model. An imple-
mentation of this model, for a specific kind of environment element based on a specific kind of
measurements, includes:

� A definition of the parameter space S.

� A characterisation of the subspaces A and V .

� A specification of the measurements and how they are represented.

� A definition of the probability density distribution p(z | xz) for measurement Z given the
parameters xz of the environment element from which the measurement originates.

� A definition of the probability p(O = true | C = true) that the measurement originates from
an element in A (O = true) given the fact that the map is correct (C = true).

� An algorithm for the computation of the integrals of equations 6.8, 6.10 and 6.11.

6.5 Implementation of the Verification Model for Central
Islands

This section describes how the map verification model of section 6.4 can be implemented for
verifying the map description of a roundabout central island, based on the output of the central
island detector discussed in chapter 4. We do this by specifying each of the aspects required for
an implementation of the model, according to the list that concludes section 6.4.

It has to be noted that some simplifications and assumptions are made in this implementation
that will be explained later. The main purpose of the implementation presented in this section
is the analysis of the verification model. The simplifications and assumptions will not affect
the verification method’s output in such way that it will lead to different conclusions. If this
implementation were to be used in practice, then the effects of the simplifications and assumptions
should be investigated.

Parameter space S. The real-world element to be verified is the central island of a roundabout.
We model a central island as a circle in the xy-plane that is parametrized by a three-dimensional
vector (kx, ky, kr), where kx and ky are the circle’s centre x-coordinate and y-coordinate respec-
tively, and kr is the radius of the circle. We assume the radius is bounded by a maximum radius
Rmax and a minimum radius Rmin. Thus S = R× R× [Rmin, Rmax].

Correct-map space A. The map description of a central island defines an annulus in which
the boundary of the real-world central island must lie. Hence, the space A of all correct central
islands consists of all circles lying within this annulus. Although A itself is not an annulus (it is
a set of circles), for the sake of simplicity we will talk about “annulus A” by which we mean “the
annulus described by the map that defines the set of circles A”. We will use symbols rmin and
rmax for the inner radius and outer radius respectively of annulus A.

Visibility space V . For this implementation, we define the space V of visible circles to be the
set of circles intersecting the region that can be observed by a particular layer of the laser scanner.
The region that can be observed by the laser scanner is defined by the position of the laser scanner,
its field of view, a minimum distance and a maximum distance. Note that his definition of V is a
simplification, where we for example ignore the fact that we can only see a circle from its exterior
and not from its interior.
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Measurement specification. In chapter 4 we concluded that the measured points correspond-
ing to a correctly detected central island, give a quite accurate description of the central island’s
geometry at those positions where it was measured. We therefore want to use these point mea-
surements for the verification of the central island. Each individual measured point corresponding
to a detected circle is used as a separate measurement for the verification of central island.

Note that when a measurement is received, the map verification model only updates the prob-
ability of the map being correct. No other information is maintained about the measurement or
about the possible state of the environment element that caused the measurement. If we would
only use the point measurement for the verification of the central island, then such a measure-
ment does not provide very precise information about the possible position of the centre of the
circle from which the measurement originates. That is, we cannot say that one of two circles is
more likely to be the point measurement’s origin, if they have the same radius and distance to
the measured point, but different directions for the vector from the measured point to the circle
centre. However, the central island detector provides more specific information about the location
of the circle from which the measurement originates via the centre of the fitted circle. Therefore,
the measurement used to verify the correctness of a central island consists of a point measurement
and the centre of the corresponding fitted circle. The latest measurement is written as z or (zp, zc)
where zp is the latest point measurement and zc is the centre of the corresponding fitted circle.

Note that treating the combination of each individual point measurement with its correspond-
ing circle centre will make measurements dependent, since measurements corresponding to the
same circle detection will have the same value for the measured centre. The effect of this depen-
dence on the performance of the presented implementation should be investigated if the implemen-
tation were to be used in practice. However, for the purpose of analysing the verification model in
general, this dependence will have no influence. For this analysis we could, for example, assume
that the central island detector only reports one measured point per detected circle to avoid the
dependence between measurements corresponding to the same detection as described above.

Measurement probability density distribution. We use K as the symbol for the random
variable representing the circular object that is the origin of the measurement1. We thus have
to specify the probability density p(zp, zc | k) of the latest measurement (zp, zc) given the value
k for the origin K of the measurement. When we assume that, given the value of K, the point
measurement Zp and centre measurement Zc are independent, then this probability density can
be written as:

p(z | k) = p(zp, zc | k) = p(zp | k) · p(zc | k)

The value of p(zc | k) can then be obtained via the distribution illustrated by the circle centre
measurement distribution shown in figure 4.27, after transforming zc to the x′y′-coordinate system
(see section 4.6). For the value of p(zp | k) we make use of the statistics about the distance from
a detected point to the border of the central island, as illustrated by figure 4.30. Let D be the
random variable for the distance from the latest point measurement to the border of the circle
that is the origin of this measurement. Let d be the distance from point zp to circle k. From the
distribution in figure 4.30 we know the probability density p(D = d). Let dd be an infinitesimal
distance. Then p(D = d)·dd is equal to the probability that the distance between the measurement
and the circle from which it originates, is between the values d and d+ dd:

p(D = d) · dd = Pr(d ≤ D ≤ d+ dd)

Note that p(D = d) is not the same as p(zp | k), since zp is not the only point for which the
distance to k is d. In fact p(D = d) · dd is the probability that Zp is one of the points for which
the distance to the circle is between the values d and d+ dd. Given the circle k = (kx, ky, kr), the
points with a distance to k between d and d + dd, form the annulus with centre (kx, ky), inner
radius kr + d and outer radius kr + d + dd. Based on the statistics collected thus far, we cannot

1That is, symbol Xz used in the generic verification model in section 6.4, is replaced by K in the implementation
for central island verification.
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say that one of the points inside this annulus is more likely to be measured than another point.
Hence, we assume that the point measurement probability density is constant inside this annulus.
This means that the probability density for each such measurement, and thereby the probability
density p(zp | k), is equal to probability p(d ≤ D ≤ d+ dd) divided by the area 2π(d+ kr) · dd of
the annulus:

p(zp | k) =
Pr(d ≤ D ≤ d+ dd)

2π(d+ kr) · dd
=

p(D = d)

2π(d+ kr)
(6.13)

Note that this measurement probability model neglects the fact that some parts of circle k may
be outside the visibility region of the laser scanner.

Map-is-measurement-origin probability. In order to keep the analysis of the verification
method simple, the probability p(O = true | C = true) that the measurement originates from a
circle in A (O = true) given the fact that the map is correct (C = true), is in this implementation
assumed to be constant. If this implementation were to be used in practice, it should be considered
to make this probability depend on the distance of the ego vehicle to annulus A based on the good-
to-total detection ratios discussed in section 4.6 and listed in appendix B.

Computation of the integrals. The integrals of equations 6.8, 6.10 and 6.11 can, of course,
be computed purely numerically for this chapter’s analysis of the presented verification model.
However, since S is a three dimensional space, the integration over V \ A and V ∩ A (which are
large, since together they contain all possible circles that can be measured), can be very costly
in terms of computation time. This will make the implementation infeasible for practical use.
In order to show that the implementation has the potential to be practically usable in terms of
computational complexity, section 6.6 demonstrates how the three-dimensional integrals can be
analytically reduced to one-dimensional integrals which can then be numerically computed. The
algorithm for this was also used for the analysis in section 6.7.

6.6 Integral Computation

This section describes how the integrals of equations 6.8, 6.10 and 6.11 can be computed for the
verification of central islands as specified by section 6.5. This section is included for the sake of
completeness, by showing that the implementation has the potential to be practically usable in
terms of computational complexity. Therefore this section is not essential for understanding the
remainder of this chapter and readers who are more interested in the evaluation of the method
may skip to section 6.7.

Recall that a measurement for the verification of a central island consists of a point mea-
surement zp and a measurement of the centre zc, that are assumed to be independent given the
parameters k of the circle from which the measurement originates. Therefore, the integral to be
computed for equation 6.8 is

γA∩V

∫
A∩V

p(zp | k) · p(zc | k) dk (6.14)

and the integral to be computed for equations 6.10 and 6.11 is:

γV \A

∫
V \A

p(zp | k) · p(zc | k) dk (6.15)

The remainder of this section describes only how equation 6.14 can be computed, since equa-
tion 6.15 can be computed by a similar approach.

Section 6.6.1 explains how the circle space over which we integrate can be partitioned into a
grid in order to simplify the computation. As a result, the problem of computing the integral of
equation 6.14 reduces to the problem of computing for each grid cell, the integral of:∫

A∩V ∩B
p(zp | k) dk (6.16)
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where B is the set of circle parameters corresponding to the grid cell. Section 6.6.2 derives an
analytic solution for: ∫

A

p(zp | k) dk

Based on this, section 6.6.3 derives, for a given a grid cell, an analytic solution for:∫
A∩B

p(zp | k) dk

Section 6.6.4 then shows how this solution can be modified, by making a few approximations to
restrict the integral to only circle parameters within V in order to have a analytic solution for
equation 6.16. The computation of the integral in equation 6.15 and the computation of γA∩V
and γV \A are not discussed in this section, since a similar (simplified) approach can be used for
these computations.

6.6.1 Partitioning the Integral’s Space into a Grid

Note that the integral over A ∩ V in equation 6.14 is an integral over a three-dimensional space,
since we describe a circle by a centre x-coordinate, centre y-coordinate and a radius. Now let us
partition the circle parameter space into a set of cells G of an orthogonal grid of which one of the
axes is parallel to the radius axis. Then the integral in equation 6.14 can be split up into integrals
for each of the cells of the parameter space:∫

A∩V
p(z | k) dk =

∑
g∈G

∫
A∩V ∩B(g)

p(zp | k) · p(zc | k) dk

where B(g) is the set of all circle parameter values in grid cell g. Recall that to obtain a value
for p(zc | k), we make use of the error distribution for circle centre measurements as illustrated in
figure 4.27. Also recall that to obtain a value for p(zp | k), we make use of the distribution for the
distance of a measured point to the border of the corresponding circle as illustrated in figure 4.30.
As concluded in chapter 4, the distance of a measured point to the border of the corresponding
circle is much smaller than the uncertainty of the measured circle centre. We will make use of this
fact for the computation of the integral. Let us choose grid G such that the cells are as large as
possible but small enough such that each circle parameter value k in a cell has approximately the
same value for p(zc | k). That is, for each cell g ∈ G we have p(zc | k) ≈ p(zc | kg), where kg is an
arbitrary element of cell g. Then we can write:∫

A∩V
p(z | k) dk ≈

∑
g∈G

p(zc | kg) ·
∫
A∩V ∩B(g)

p(zp | k) dk (6.17)

Note that since for different values of k within a certain grid cell the value p(zp | k) may vary
significantly, p(zp | k) is not moved outside the integral in the equation above. Because the radius
of a circle k has no influence on the probability density for the measured circle centre p(zc | k),
we choose the cells of grid G to only vary in their x and y coordinates.

The error distribution of the measured centre is represented by a two-dimensional histogram
in the x′y′-coordinate system (see section 4.6.5 for the definition of the coordinate system). It
would be very convenient if we could choose grid G in such way that each of its cells corresponds
with a bin of this histogram, since then computation of the sum in equation 6.17 would translate
into an iteration over the histogram’s bins and p(zc | kg) would be equal to the probability density
described by the value of the corresponding bin. Unfortunately this is not possible since the
orientation of the x′y′-coordinate system depends on the circle k from which the measurement
originates: the x′-axis points in the same direction as the vector from the laser scanner’s origin to
the centre of k. However for a given value of the centre measurement zc, the x′y′ coordinate system
can be approximated by redefining the x′y′-coordinate system such that the x′ axis has the same
direction as the vector from the laser scanner’s origin to the measured circle centre zc (instead of
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Algorithm ComputeIntegralOverAIntersectionV (zp, zc, A, V )
1. Let H be the centre-measurement-error histogram as illustrated in figure 4.27
2. Let G be the grid that is aligned with the x′-, y′- and radius-axis and for which, given

the centre measurement zc, each cell corresponds to a bin in H
3. s← 0
4. for each cell g ∈ G
5. do Let h be the bin of H corresponding to cell g
6. p← the probability density of bin h
7. u←

∫
A∩V ∩B(g)

p(zp | k) dk
8. s← s+ p · u
9. return s

Algorithm 6.1: Given the point measurement zp, centre measurement zc, a description of A and a descrip-
tion of visibility space V , this algorithm computes the integral in equation 6.14.

the centre of k). This has been verified to be a good approximation via the comparison of the
centre error histogram visualised by figure 4.27 with the centre error histogram that was computed
(based on the same measurements) with the approximated x′y′-coordinate system. Whenever we
refer to the x′y′-coordinate system in the remainder of this chapter, we mean the approximation
of this coordinate system.

With the approximated x′y′-coordinate system we can define G to be the grid that is aligned
with the x′-axis, the y′-axis and the radius axis, for which each cell has the minimum radius value
Rmin, maximum radius value Rmax and the x′y′-coordinates correspond to a bin in the centre-
measurement-error histogram illustrated in figure 4.27 (note that such a correspondence can only
be made given the centre measurement zc).

Algorithm 6.1 shows how equation 6.17 can be evaluated. Line 7 involves the computation of
the following integral of the point-measurement probability:∫

A∩V ∩B
p(zp | k) dk

where B is the set of all circle parameter values within a certain grid cell. The evaluation of this
integral is discussed in the following sections.

6.6.2 Integration over A

Before we consider the evaluation of equation 6.16 which integrates over A ∩ V ∩ B, we consider
in this section the evaluation of the integral over the set of circles A that are within the annulus:∫

A

p(zp | k) dk (6.18)

Note that this is an integral over a three-dimensional space. This section will show that it can be
rewritten to a one-dimensional integral that can be evaluated numerically in an efficient manner.

Exploiting symmetry. Recall from equation 6.13 that the probability density for a point mea-
surement zp, given that the circle from which the measurement originates is k, is:

p(zp | k) =
p(D = d)

2π(d+ kr)

where d is the smallest distance between zp and the border of k, and kr is the radius of k. This
means that p(zp | k) has the same value for every circle k with the same radius and the same
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θ

d

k

rk − d

rk

p

zp

(a) case d > 0

rk − dθ

|d|

k

rk

p
zp

(b) case d < 0

Figure 6.1: These illustrations show how a circle k is described by rk, θ and d relative to a point measure-
ment zp. The dotted line is the line through point zp and the centre of annulus A which is somewhere to
the right of zp. Point p is the point of k with the closest distance to zp.

distance to point zp. We want to exploit the symmetry of p(zp | k) around point zp to simplify
integral 6.18. In order to do so, we express a circle k in a coordinate system different from
the x-y-radius-coordinate system we usually use for circles. In this coordinate system a circle k
is expressed by an rk, θ and d parameter, as illustrated by figure 6.1. The rk parameter value
represents the distance from the centre of circle k to the measured point zp. The value θ represents
the angle between the vector from zp to the centre of k and the vector from zp to the centre of
annulus A. That means that (rk, θ) are the coordinates of k’s centre in a polar coordinate system
with its origin at zp. We restrict circle parameter θ to values in the interval [−π, π]. Value d is
the smallest distance from point zp to circle k (which conforms to the meaning of symbol d in the
rest of this thesis), where a positive value means that zp is outside circle k (see figure 6.1a) and a
negative value means that zp is enclosed by circle k (see figure 6.1b).

We can now rewrite the integral of equation 6.18 to an integral over A in rk, θ, d coordinates:∫
A

p(zp | k) dk =

∫ ∞
−∞

∫
Θ(d)

∫ rk,max(d,θ)

rk,min(d,θ)

p(zp | k) · rk drk dθ dd

where Θ(d) is the set of values for circle parameter θ for which there exist circles that are inside
annulus A, and where the range [rk,min(d, θ), rk,max(d, θ)] is, given the circle’s d and θ parameter
value, the range of all rk parameter values for which the circle is inside annulus A. Now by using
the definition in equation 6.13 for p(zp | k) and noting that d + kr = rk, the above equation can
be rewritten to: ∫

A

p(zp | k) dk =

∫ ∞
−∞

∫
Θ(d)

∫ rk,max(d,θ)

rk,min(d,θ)

p(D = d)

2πrk
· rk drk dθ dd,

which, in turn, can be rewritten to:∫
A

p(zp | k) dk =
1

2π

∫ ∞
−∞

p(D = d)

∫
Θ(d)

(rk,max(d, θ)− rk,min(d, θ)) dθ dd. (6.19)

What now remains is a derivation of the functions rk,min, rk,max and Θ and solving the inner
integral of equation 6.19.

Derivation of rk,min(d, θ) and rk,max(d, θ). Let us assume that and d, θ are given. Note that
the radius of the circle is rk − d. Then the maximum value rk,max(d, θ) for rk is defined by the
outer border of annulus A, since the radius of the circle has to be small enough to be enclosed
by the outer border of the annulus. Observe that that point p also has to be enclosed by the
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(a) Circle k is enclosed by the annulus’s outer
border.

(b) The annulus’s inner border is enclosed by
circle k.

Figure 6.2: This figure illustrates how the smallest distance ∆ between a circle k and the annulus’s outer
border or inner border can be described in terms of rk, d, ra and rmax or rmin. Here e is the distance
between the circle’s centre and the annulus’s centre: e =

√
r2a + r2k − 2rark cos(θ). The dashed circles are

the borders of the annulus.

outer border of the annulus, since p is by definition a point of the circle. Let us now assume that
p is enclosed by the outer border of the annulus. The smallest distance between a circle with
radius r1 and a circle enclosed by it with radius r2, given the distance e between its two centres,
is r1− r2− e. In our case this means that the smallest distance between the circle and the outside
border of the annulus is rmax− (rk−d)−e, where e is the distance between the centre of the circle
and the centre of the annulus (see figure 6.2a). Let ra be the distance between measurement zp
and the centre of the annulus. Then, by the law of cosines, e =

√
r2
a + r2

k − 2rark cos(θ). Now rk
has reached its maximum value when the circle hits the border of the outside annulus, that is the
distance between the circle and outside border is zero:

rmax − (rk − d)−
√
r2
a + r2

k − 2rark cos(θ) = 0

Moving the last term to the right we get:

rmax − (rk − d) =
√
r2
a + r2

k − 2rark cos(θ) (6.20)

Note that the right side of this equation is non-negative. This means that there is a only a solution
for this equation if rmax−(rk−d) is non-negative. In that case equation 6.20 gives us the maximum
value for circle parameter rk:

rk,max(d, θ) =
r2
a − (d+ rmax)2

2(ra cos(θ)− (d+ rmax))
(6.21)

The minimum value rk,min(d, θ) for circle parameter rk is defined by the inner border of annulus
A, since the radius of the circle has to be large enough to enclose the inner border of the annulus.
Note that point p hast to be outside the inner border of the annulus, since p is by definition a point
on the circle. We therefore now assume that point p is outside the inner border of the annulus.
First observe that if d is negative (meaning measurement zp is enclosed by the circle) and if the
circle centred at zp entirely encapsulates the annulus’s inner border (i.e. −d ≥ ra + rmin), then
for every value of circle parameter rk the annulus’s inner border is enclosed by the circle. Now
let us consider the complementary case where −d < ra + rmin. Then the smallest value of circle
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Figure 6.3: This figure illustrates that in case ra−rmax ≤ d ≤ ra−rmin and −d ≥ ra +rmin (which implies
d ≤ 0), there exists a circle k with θ = π at distance d from point zp that is enclosed by the annulus’s
outer border. The particular k illustrated here hits the annulus’s outer border and therefore its diameter
equals rmax − d− ra, which means that rk = d+ (rmax − d− ra)/2 = (rmax + d− ra)/2. Observe that for
any other value of θ, circle k will also be enclosed by the annulus’s outer border.

parameter rk for which the radius of the circle is large enough to enclose the inner border of the
annulus, is the value for which the distance between the circle and the inner border of the annulus
is zero (see figure 6.2b):

(rk − d)− rmin −
√
r2
a + r2

k − 2rark cos(θ) = 0 (6.22)

This equation only has a solution if rk − d− rmin is non-negative. In that case equation 6.22 gives
us the minimum value for circle parameter rk:

rk,min(d, θ) =

{
r2a−(d+rmin)2

2(ra cos(θ)−(d+rmin)) if − d < ra + rmin

0 if − d ≥ ra + rmin

(6.23)

Derivation of Θ(d). Let us now derive the set Θ(d), the set of values for circle parameter θ in
the range [−π, π] for which there exist a circle of which the distance to point zp is d and that is
inside annulus A. First, observe that if ra − rmax > d (also for d < 0) then there will be no circle
enclosed by the outer border of annulus A, and thus in that case Θ(d) will be empty. Similarly,
there will be no circle enclosing the inner border of annulus A if d > ra − rmin, and thus also in
that case Θ(d) will be empty. Second, observe that if ra− rmax ≤ d ≤ ra− rmin then there always
exists a circle such that the distance between this circle and point zp equals d, and the circle is
inside the annulus. Third, observe in case ra− rmax ≤ d ≤ ra− rmin that if −d ≥ ra + rmin (which
implies d ≤ 0) then every circle with distance d to point zp encloses the annulus’s inner border.
Furthermore, for each θ the circle with rk = (rmax + d− ra)/2 (see figure 6.3) is then enclosed by
the annulus’s outer border, which means that in that case Θ(d) = [−π, π].

Finally, let us consider, given a value for d, the circle k∗(d) for which the distance to point
zp is d, for which parameter θ is non-negative and that touches both the inner border and outer
border of the annulus (see figure 6.4). Let the rk and θ parameter of k∗(d) be r∗k(d) and θ∗(d)
respectively. Observe that a circle inside the annulus that touches both the annulus’s inner border
and outer border, has a radius of (rmin + rmax)/2 and the distance of its centre to the annulus’s
centre is (rmax − rmin)/2. This means that r∗k(d) = d+ (rmin + rmax)/2 and that (by applying the
law of cosines):

θ∗(d) = arccos

(
r2
a + r∗k(d)2 −

(
rmax−rmin

2

)2
2rar∗k(d)

)

= arccos

(
d2 + drmax + drmin + rmaxrmin + r2

a

ra(2d+ rmax + rmin)

)
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Figure 6.4: Given a value for d, the circle k∗(d) is the circle for which the distance to point zp is d, for
which parameter θ is non-negative and that touches both the inner border and outer border of the annulus.

Now observe that k∗(d) is the only circle for which the distance to point zp is d and for which
the θ parameter is θ∗(d) that is inside the annulus (except the case where θ∗(d) = 0): increasing
its rk parameter would make the circle intersect with the annulus’s outer border and decreasing
it would make the circle intersect the annulus’s inner border. This means that rk,min(d, θ∗(d)) =
rk,max(d, θ∗(d)). Note that we consider the case where ra−rmax ≤ d ≤ ra−rmin and −d < ra+rmin,
which means that we have ra ≥ rmin + d and ra > −(rmin + d) and therefore ra ≥ |rmin + d|≥ 0.
Furthermore we have ra ≤ rmax + d ≤ |rmax + d|. Consequently, rk,min(d, θ) is a monotonically
increasing function of θ and rk,max(d, θ) is a monotonically decreasing function of θ in the interval
[0, π]. This means that for θ > θ∗(d) we have rk,min(d, θ) > rk,max(d, θ) which implies that there
exists no circle with such θ parameter that both is enclosed by the annulus’s outer border and
encloses the annulus’s inner border. From this we can conclude θ∗(d) is the largest non-negative
value (of at most π) for circle parameter θ, such that the circle is inside the annulus. Note that
any circle with non-negative θ < θ∗(d), distance d to point zp and radius (rmin + rmax)/2, is inside
the annulus.

Concluding the discussion above Θ(d) can be written as:

Θ(d) =


∅ if ra > d+ rmax ∨ ra < d+ rmin

[−θ∗(d), θ∗(d)] if ra − rmax ≤ d ≤ ra − rmin ∧ − d < ra + rmin

[−π, π] if ra − rmax ≤ d ≤ ra − rmin ∧ − d ≥ ra + rmin

(6.24)

Solving the inner integral. Considering the values of circle parameter d for which Θ(d) is
empty (see equation 6.24), the integral in equation 6.19 can be reduced to:∫

A

p(zp | k) dk =
1

2π

∫ ra−rmin

ra−rmax

p(d)

∫
Θ(d)

(rk,max(d, θ)− rk,min(d, θ)) dθ dd (6.25)

Let us define function fb for b ∈ {max,min} as follows:

fb(d, θ) =
√
r2
a − (d+ rb)2 arctanh

(
tan(θ/2)(ra + d+ rb)√

r2
a − (d+ rb)2

)
(6.26)

Note that if r2
a − (d+ rb)

2 is negative, fb(d, θ) is still a real number and can also be written as:

fb(d, θ) =
√

(d+ rb)2 − r2
a arctan

(
tan(θ/2)(ra + d+ rb)√

(d+ rb)2 − r2
a

)
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Now observe that for b = max or b = min∧ − d < ra + rmin:∫
rk,b(d, θ) dθ =

∫
r2
a − (d+ rb)

2

2(ra cos(θ)− (d+ rb))
dθ = fb(d, θ) + constant (6.27)

Note that fb(d, θ) is undefined for θ = π. However the integral of rk,b from 0 to π can be computed
as follows:∫ π

0

rk,b(d, θ) dθ = lim
a→π+

∫ a

0

rk,b(d, θ) dθ = lim
a→π+

fb(d, a) =
π

2

√
(d+ rb)2 − r2

a (6.28)

Using equations 6.27 and 6.28, we can rewrite equation 6.25 for the case ra − rmax < −ra − rmin

to: ∫
A

p(zp | k) dk =
1

2

∫ −ra−rmin

ra−rmax

p(d)
√

(d+ rmax)2 − r2
a dd

+
1

π

∫ ra−rmin

−ra−rmin

p(d) · (fmax(d, θ∗(d))− fmin(d, θ∗(d))) dd

(6.29)

where the first term is the integral over the values of circle parameter d corresponding to the third
case of the definition of Θ(d) in equation 6.24 (in this case we also have rk,min(d, θ) = 0) and
where the second term is the integral over the values of circle parameter d corresponding to the
second case. In case ra − rmax ≥ −ra − rmin, equation 6.25 can be rewritten to:∫

A

p(zp | k) dk =
1

π

∫ ra−rmin

ra−rmax

p(d) · (fmax(d, θ∗(d))− fmin(d, θ∗(d))) dd (6.30)

Numerical evaluation. We have now shown that the three-dimensional integral of equation 6.18
can be rewritten to a one-dimensional integral over d (i.e. equations 6.29 and 6.30), the distance
between the measured point and the distance of the circle from which the measurement originates.
This integral can be numerically evaluated by iterating over the bins of the histogram illustrated
in figure 4.30 and computing the integrand’s value for each bin where the bin value is used as the
value of p(d).

6.6.3 Integration over A ∩B
In subsection 6.6.2 we showed how the integral in equation 6.18 over set of circles in A can be
evaluated. Based on this result, we will in this section show how we can evaluate an integral of
the form ∫

A∩B
p(zp | k) dk (6.31)

where B is the set of circle parameters corresponding to a cell of the grid as defined in section 6.6.1.

Adding the constraints of B. Now let us describe B by means of the variables xmin, xmax,
ymin, ymax, Rmin and Rmax, such that B is the set of all circles for which the centre’s x′-coordinate
is within the interval [xmin, xmax], the centre’s y′-coordinate is within the interval [ymin, ymax] and
the radius is within the interval [Rmin, Rmax].

Recall equation 6.25 for the integral over A:∫
A

p(zp | k) dk =
1

2π

∫ ra−rmin

ra−rmax

p(d)

∫
Θ(d)

(rk,max(d, θ)− rk,min(d, θ)) dθ dd

Here Θ(d) is the set of all values for θ for which there exists a circle within annulus A. Interval
[rk,max(d, θ), rk,min(d, θ)] is the interval of values for circle parameter rk (the distance between zp
and the circle centre) of all circles with the specified θ and d that are within annulus A. That
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is, functions Θ, rk,min and rk,max define the constraints on a circle’s rk and θ parameter in order
to be a circle that is in A. Now for the integral of equation 6.31 over A ∩ B we will introduce
similar functions Θ′, r′k,min and r′k,max that describe the constraints for circles that are in A ∩B.
Equation 6.31 can then be written in a form similar to equation 6.31:∫

A∩B
p(zp | k) dk =

1

2π

∫ ra−rmin

ra−rmax

p(d)

∫
Θ′(d)

(
r′k,max(d, θ)− r′k,min(d, θ)

)
dθ dd (6.32)

Here Θ′(d) = Θ(d) ∩ ΘB , where ΘB is the set of values for circle parameter θ for which there
exists a circle with centre x′-coordinate in the interval [xmin, xmax] and centre y′-coordinate in the
interval [ymin, ymax]. Values r′k,min(d, θ) and r′k,max(d, θ) are defined such that:

[r′k,min(d, θ), r′k,max(d, θ)] = [rk,min(d, θ), rk,max(d, θ)]

∩ [rk,low(θ), rk,up(θ)]
∩ [d+Rmin, d+Rmax]

where for a given θ, [rk,low(θ), rk,up(θ)] is the interval of all values for rk for which the circle
centre is within the axis-parallel rectangle defined by B. Interval [d+Rmin, d+Rmax] comes from
the constraint from B that the circle’s radius (which is equal to rk − d) must be in the interval
[Rmin, Rmax]. The following lemma will help us to obtain a closed-form expression for r′k,min(d, θ)
and r′k,max(d, θ).

Lemma 5. Let [a1, a2] and [b1, b2] be two intervals. Then if c1 = min(max(a1, b1), a2) and c2 =
max(min(a2, b2), a1), for any function f : R→ R the following holds:∫

[a1,a2]∩[b1,b2]

f(x) dx =

∫
[c1,c2]

f(x) dx

Proof. Let us first consider the case where intervals [a1, a2] and [b1, b2] do not overlap. That means
that either a2 < b1 or b2 < a1. Let us consider the case that a2 < b1 (the case b2 < a1 is similar).
Note that a1 ≤ a2 and therefore a1 < b1. Thus:

c1 = min(max(a1, b1), a2) = min(b1, a2) = a2

Since b1 ≤ b2 we have a2 < b2 and therefore:

c2 = max(min(a2, b2), a1) = max(a2, a1) = a2

The following equation concludes the proof in case of non-overlapping intervals:∫
[a1,a2]∩[b1,b2]

f(x) dx =

∫
∅
f(x) dx = 0 =

∫ a2

a2

f(x) dx =

∫
[c1,c2]

f(x) dx

Now let us consider the case where the intervals are overlapping. This means that a2 ≥ b1 and
b2 ≥ a1. In case of overlapping intervals we have:

[a1, a2] ∩ [b1, b2] = [max(a1, b1),min(a2, b2)]

Since both a1 and b1 are at most a2:

c1 = min(max(a1, b1), a2) = max(a1, b1)

Since both b2 and a2 are at least a1:

c2 = max(min(a2, b2), a1) = min(a2, b2)

So we can conclude that:

[a1, a2] ∩ [b1, b2] = [max(a1, b1),min(a2, b2)] = [c1, c2]

By applying lemma 5 twice we obtain the following definitions for r′k,min(d, θ) and r′k,max(d, θ):

r′k,min(d, θ) = min (max (min (max (rk,low(θ), d+Rmin) , d+Rmax) , rk,min(d, θ)) , rk,max(d, θ))
(6.33)

r′k,max(d, θ) = max (min (max (min (rk,up(θ), d+Rmax) , d+Rmin) , rk,max(d, θ)) , rk,min(d, θ))
(6.34)
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Figure 6.5: The Cartesian coordinate system in which the centre (kx′ , ky′) of a circle is described is defined
as the coordinate system that has point zp as its origin and the centre of annulus A (the annulus is blue
in this illustration) on the positive x′-axis.

Deriving rk,low(θ), rk,up(θ) and ΘB. Recall that the set of possible circle centre coordinates in
B is an axis-parallel rectangle in the x′y′-coordinate system. Without loss of generality, we assume
that the x′y′-coordinate system has point zp as its origin. Let β be the angle between the vector
from zp to the annulus’s centre and the positive x′-axis (see figure 6.5). For an angle φ ∈ [−π, π]
relative to the positive x′-axis, we define ψ(φ) to be the corresponding angle in [−π, π] relative
to the vector from zp to the annulus’s centre (i.e. θ value):

ψ(φ) =

{
φ− β if φ− β ≥ −π
φ− β + 2π otherwise

We introduce function Ψ, in order to map angular intervals relative to the positive x′-axis to the
corresponding angular intervals relative to the vector from zp to the annulus’s centre. For two
angles φa, φb ∈ [−π, π] relative to the positive x′ axis, Ψ(φa, φb) is defined to be the corresponding
set of angles in [−π, π] relative to the vector from zp to the annulus’s centre (i.e. θ values), that
are covered when we start with an angle of φa and increase it (in counter-clockwise direction) until
we reach the first angle coterminal to φb:

Ψ(φa, φb) =

{
[ψ(φa), ψ(φb)] if ψ(φa) ≤ ψ(φb)

[ψ(φa), π] ∪ [−π, ψ(φb)] otherwise

Now let (kx′ , ky′) be the x′y′-coordinates of a circle’s centre. Then kx′ and ky′ can be described
in terms of the circle’s rk and θ as follows (see figure 6.5):

kx′ = rk cos(β + θ)

ky′ = rk sin(β + θ)

Using this we can formulate the constraints on rk that the centre of the circle must be inside the
axis-parallel rectangle defined by B:

xmin ≤ rk cos(β + θ) ≤ xmax

ymin ≤ rk sin(β + θ) ≤ ymax

Depending on the position of the rectangle of valid centre coordinates relative to the x′-axis and
y′-axis, these constraints can be used to obtain a definition of rk,low(θ) and rk,up(θ). We consider
the nine different cases listed in table 6.1 of positions of the axis-parallel rectangle, which are also
illustrated in figure 6.7. Let φ0, φ1, φ2 and φ3 be the angle between the positive x′-axis and the
vector from the origin to the rectangle’s upper-right, upper-left, lower-left and lower-right corner
respectively (see figure 6.6). Table 6.1 also shows for each of the cases the set ΘB in terms of these
corner angles. Table 6.2 shows for each of the cases and intervals of θ what the values of rk,low(θ)
and rk,up(θ) are.
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φ1 x′

y′

φ0 φ3φ2

Figure 6.6: φ0, φ1, φ2 and φ3 are defined as the angles between the positive x′-axis and the vector between
the origin and rectangle’s upper-right corner, upper-left corner, lower-left corner and lower-right corner
respectively.
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876
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Figure 6.7: This figure shows the 9 different cases of the rectangle’s position relative to the x′ and y′-axis
as described in table 6.1.

case condition ΘB

0 xmin ≤ 0 ≤ xmax ∧ ymin ≤ 0 ≤ ymax [−π, π]
1 0 ≤ xmin ∧ ymin ≤ 0 ≤ ymax Ψ(φ2, φ1)
2 0 ≤ xmin ∧ 0 ≤ ymin Ψ(φ3, φ1)
3 xmin ≤ 0 ≤ xmax ∧ 0 ≤ ymin Ψ(φ3, φ2)
4 xmax ≤ 0 ∧ 0 ≤ ymin Ψ(φ0, φ2)
5 xmax ≤ 0 ∧ ymin ≤ 0 ≤ ymax Ψ(φ0, φ3)
6 xmax ≤ 0 ∧ ymax ≤ 0 Ψ(φ1, φ3)
7 xmin ≤ 0 ≤ xmax ∧ ymax ≤ 0 Ψ(φ1, φ0)
8 0 ≤ xmin ∧ ymax ≤ 0 Ψ(φ2, φ0)

Table 6.1: The set of centre coordinates of all circles in B is an axis-parallel rectangle. This table lists
the 9 different cases, considered in this section, for the rectangle’s position relative to the x′ and y′-axis.
These cases are illustrated in figure 6.7. This table also lists for each case the value of set ΘB , which is the
set of all values of circle parameter θ for which there exists a circle with the centre inside the rectangle.
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case rk,low(θ) rk,up(θ) for θ interval(s)

0 0 ymax/sin(β + θ) Ψ(φ0, φ1)
0 0 xmin/cos(β + θ) Ψ(φ1, φ2)
0 0 ymin/sin(β + θ) Ψ(φ2, φ3)
0 0 xmax/cos(β + θ) Ψ(φ3, φ0)

1 xmin/cos(β + θ) ymax/sin(β + θ) Ψ(φ0, φ1)
1 xmin/cos(β + θ) ymin/sin(β + θ) Ψ(φ2, φ3)
1 xmin/cos(β + θ) xmax/cos(β + θ) Ψ(φ3, φ0)

2 xmin/cos(β + θ) ymax/sin(β + θ)

{
Ψ(φ0, φ1) if φ0 > φ2

Ψ(φ2, φ1) if φ0 ≤ φ2

2 xmin/cos(β + θ) xmax/cos(β + θ) Ψ(φ2, φ0) if φ0 > φ2

2 ymin/sin(β + θ) ymax/sin(β + θ) Ψ(φ0, φ2) if φ0 ≤ φ2

2 ymin/sin(β + θ) xmax/cos(β + θ)

{
Ψ(φ3, φ0) if φ0 ≤ φ2

Ψ(φ3, φ2) if φ0 > φ2

3 ymin/sin(β + θ) ymax/sin(β + θ) Ψ(φ0, φ1)
3 ymin/sin(β + θ) xmin/cos(β + θ) Ψ(φ1, φ2)
3 ymin/sin(β + θ) xmax/cos(β + θ) Ψ(φ3, φ0)

4 xmax/cos(β + θ) ymax/sin(β + θ)

{
Ψ(φ0, φ1) if φ1 ≤ φ3

Ψ(φ0, φ3) if φ1 > φ3

4 xmax/cos(β + θ) xmin/cos(β + θ) Ψ(φ1, φ3) if φ1 ≤ φ3

4 ymin/sin(β + θ) ymax/sin(β + θ) Ψ(φ3, φ1) if φ1 > φ3

4 ymin/sin(β + θ) xmin/cos(β + θ)

{
Ψ(φ3, φ2) if φ1 ≤ φ3

Ψ(φ1, φ2) if φ1 > φ3

5 xmax/cos(β + θ) ymax/sin(β + θ) Ψ(φ0, φ1)
5 xmax/cos(β + θ) xmin/cos(β + θ) Ψ(φ1, φ2)
5 xmax/cos(β + θ) ymin/sin(β + θ) Ψ(φ2, φ3)

6 ymax/sin(β + θ) xmin/cos(β + θ)

{
Ψ(φ1, φ2) if φ2 ≤ φ0

Ψ(φ1, φ0) if φ2 > φ0

6 ymax/sin(β + θ) ymin/sin(β + θ) Ψ(φ2, φ0) if φ2 ≤ φ0

6 xmax/cos(β + θ) xmin/cos(β + θ) Ψ(φ0, φ2) if φ2 > φ0

6 xmax/cos(β + θ) ymin/sin(β + θ)

{
Ψ(φ2, φ3) if φ2 > φ0

Ψ(φ0, φ3) if φ2 ≤ φ0

7 ymax/sin(β + θ) xmin/cos(β + θ) Ψ(φ1, φ2)
7 ymax/sin(β + θ) ymin/sin(β + θ) Ψ(φ2, φ3)
7 ymax/sin(β + θ) xmax/cos(β + θ) Ψ(φ3, φ0)

8 xmin/cos(β + θ) ymin/sin(β + θ)

{
Ψ(φ2, φ3) if φ3 ≤ φ1

Ψ(φ2, φ1) if φ3 > φ1

8 xmin/cos(β + θ) xmax/cos(β + θ) Ψ(φ3, φ1) if φ3 ≤ φ1

8 ymax/sin(β + θ) ymin/sin(β + θ) Ψ(φ1, φ3) if φ3 > φ1

8 ymax/sin(β + θ) xmax/cos(β + θ)

{
Ψ(φ3, φ0) if φ3 > φ1

Ψ(φ1, φ0) if φ3 ≤ φ1

Table 6.2: This table lists for each of the cases in table 6.1, the values of rk’s lower bound rk,low(θ) and
rk’s upper bound rk,up(θ) for specific intervals for circle parameter θ.
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Splitting up the integral. Using table 6.2, the integral of equation 6.32 can be rewritten to a
sum in which each term has one of two forms, either

1

2π

∫ ra−rmin

ra−rmax

p(d)

∫
Θ(d)∩[θmin,θmax]

r′k,max(d, θ) dθ dd (6.35)

for some interval [θmin, θmax] or

− 1

2π

∫ ra−rmin

ra−rmax

p(d)

∫
Θ(d)∩[θmin,θmax]

r′k,min(d, θ) dθ dd (6.36)

for some interval [θmin, θmax]. In each term of the form of equation 6.35 we can rewrite r′k,max(d, θ)
to the expression of equation 6.34, which contains rk,up(θ). The [θmin, θmax] of such a term can
be chosen such that there exists a b such that either for each θ ∈ [θmin, θmax] we have rk,up(θ) =
b/sin(β + θ), or for each θ ∈ [θmin, θmax] we have rk,up(θ) = b/cos(β + θ) (see table 6.2). Similarly
in each term of the form of equation 6.36 we can rewrite r′k,min(d, θ) to the expression of equation
6.33, which contains rk,low(θ). The [θmin, θmax] of such a term can be chosen such that there
exists a b such that either for each θ ∈ [θmin, θmax] we have rk,low(θ) = b/sin(β + θ), or for each
θ ∈ [θmin, θmax] we have rk,low(θ) = b/cos(β+ θ). As an example of how equation 6.32 can be split
up into terms as described above, consider case 2 (see figure 6.7 and table 6.2) with φ0 > φ2 and
β = 0, for which equation 6.32 can be rewritten to:∫

A∩B
p(zp | k) dk =

1

2π

∫ ra−rmin

ra−rmax

p(d)

∫
Θ(d)∩[φ0,φ1]

r′k,max(d, θ) dθ dd

+
1

2π

∫ ra−rmin

ra−rmax

p(d)

∫
Θ(d)∩[φ2,φ0]

r′k,max(d, θ) dθ dd

+
1

2π

∫ ra−rmin

ra−rmax

p(d)

∫
Θ(d)∩[φ3,φ2]

r′k,max(d, θ) dθ dd

− 1

2π

∫ ra−rmin

ra−rmax

p(d)

∫
Θ(d)∩[φ0,φ1]

r′k,min(d, θ) dθ dd

− 1

2π

∫ ra−rmin

ra−rmax

p(d)

∫
Θ(d)∩[φ2,φ0]

r′k,min(d, θ) dθ dd

− 1

2π

∫ ra−rmin

ra−rmax

p(d)

∫
Θ(d)∩[φ3,φ2]

r′k,min(d, θ) dθ dd,

where for θ ∈ [φ0, φ1] we have rk,low(θ) = xmin/cos(β + θ) and rk,up(θ) = ymax/sin(β + θ), for
θ ∈ [φ2, φ0] we have rk,low(θ) = xmin/cos(β + θ) and rk,up(θ) = xmax/cos(β + θ), for θ ∈ [φ3, φ2]
we have rk,low(θ) = ymin/sin(β + θ) and rk,up(θ) = xmax/cos(β + θ).

Let us now consider finding a solution for integrals of the form of equation 6.35 (integrals of
the form of equation 6.36 can be solved in a way similar to the following approach). Similar to
our approach in section 6.6.2, we want to solve the inner integral by finding the antiderivative
of its integrand. Depending on the value of θ and d this integrand r′k,max(d, θ) is either rk,up(θ),
d + Rmax, d + Rmin, rk,max(d, θ) or rk,min(d, θ) (see equation 6.34). These different functions
obviously have different antiderivatives. We therefore split up the integral of equation 6.35 into
integrals over intervals of d and θ for which r′k,max(d, θ) is either rk,up(θ), d + Rmax, d + Rmin,
rk,max(d, θ) or rk,min(d, θ) for each d, θ value in such interval. In order to do that, we introduce
dθ-interval sets.

We will use so-called dθ-interval sets as a representation for subspaces of the two-dimensional
real number space. The name dθ-interval set is chosen because we apply this to the two dimensional
space of the d and θ parameters discussed in this section.

Definition 10 (dθ-interval set). A dθ-interval set is a subset of ((R × R) × P([R → R] ×
[R → R])), where R are the affinely extended real numbers (i.e. R = R ∪ {−∞,∞}). Let
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Y = {(δ1,Ω1), (δ2,Ω2), . . . , (δn,Ωn)} be such a dθ-interval set with for each i, 1 ≤ i ≤ n,

δi = (δ
(1)
i , δ

(2)
i ) and Ωi = {(ω(1)

i,1 , ω
(2)
i,1 ), . . . , (ω

(1)
i,m(i), ω

(2)
i,m(i))} (m(i) is used to indicate the number

of elements of Ωi). In its closed-interval interpretation, an element (δi,Ωi) of this dθ-interval set

represents the set of all elements (d, θ) ∈ R× R for which d ∈ [δ
(1)
i , δ

(2)
i ] and θ ∈ [ω

(1)
i,j (d), ω

(2)
i,j (d)]

for some j (note that the interval for θ is a function of d). The complete dθ-interval set represents
the union of all the subspaces of R×R represented by its elements. Function C maps a dθ-interval
set to the subset of R× R corresponding to its closed-interval interpretation:

C(Y ) = {(d, θ) ∈ R×R : (∃i, j : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m(i) : d ∈ [δ
(1)
i , δ

(2)
i ] ∧ θ ∈ [ω

(1)
i,j (d), ω

(2)
i,j (d)])}

We require all elements in a dθ-interval set to be disjoint. Two elements (δi,Ωi) and (δj ,Ωj) are
disjoint if and only if the Lebesgue measure of C({(δi,Ωi)})∩C({(δj ,Ωj)}) equals 0. Furthermore,

we require for each element ((δ
(1)
i , δ

(2)
i ), Ωi) of a dθ-interval set and for each pair of different

elements (ω
(1)
i,a , ω

(2)
i,a ) and (ω

(1)
i,b , ω

(2)
i,b ) of such Ωi, that for each value d ∈ [δ

(1)
i , δ

(2)
i ] the Lebesgue

measure of [ω
(1)
i,a (d), ω

(2)
i,a (d)] ∩ [ω

(1)
i,b (d), ω

(2)
i,b (d)] equals 0.

In this section’s application of dθ-interval sets we only consider values in range [−π, π] for the
second dimension (i.e. circle parameter θ) of the two-dimensional space.

Let {f1, . . . , fn} be a set of n functions such that for each i, 1 ≤ i ≤ n, fi:R × R → R and
there exists a function Fi:R×R→ R such that for each d, θ we have fi(d, θ) = ∂Fi(d, θ)/∂θ. Let
g:R× R→ R be a function such that for each d and θ, there exists an i, 1 ≤ i ≤ n, such that:

g(d, θ) = fi(d, θ)

Let for each i, 1 ≤ i ≤ n, Yi be a dθ-interval set such that: (i) for each (d, θ) ∈ C(Yi) we have
g(d, θ) = fi(d, θ), (ii) we have C(Y1)∪C(Y2)∪ . . .∪C(Yn) = R×R, (iii) for each j, with 1 ≤ j ≤ n
and j 6= i, the Lebesgue measure of C(Yi) ∩ C(Yj) equals 0. Then for some lower bound da and
upper bound db for d, and some lower bound θa(d) and upper bound θb(d) for θ as functions of d,
we have:∫ db

da

p(d)

∫ θb(d)

θa(d)

g(d, θ) dθ dd =

n∑
i=1

∑
(δ,Ω)∈Yi

∫
[δ(1),δ(2)]∩[da,db]

p(d)
∑

(ωa,ωb)∈Ω

∫
[ωa(d),ωb(d)]∩[θa(d),θb(d)]

fi(d, θ) dθ

 dd (6.37)

and by applying lemma 5:∫ db

da

p(d)

∫ θb(d)

θa(d)

g(d, θ) dθ dd =

n∑
i=1

∑
(δ,Ω)∈Yi

∫
[δ(1),δ(2)]∩[da,db]

p(d)
∑

(ωa,ωb)∈Ω

(Fi(d, v)− Fi(d, u)) dd

(6.38)
where u = min(max(ωa(d), θa(d)), ωb(d)) and v = max(min(ωb(d), θb(d)), ωa(d)).

Equation 6.38 is a solution for integrals as in equation 6.35, by choosing da = ra − rmax,
db = ra − rmin, [θa(d), θb(d)] = Θ(d) ∩ [θmin, θmax], g(d, θ) = r′k,max(d, θ) and:

f1(d, θ) = rk,up(θ)

f2(d, θ) = d+Rmax

f3(d, θ) = d+Rmin

f4(d, θ) = rk,max(d, θ)

f5(d, θ) = rk,min(d, θ)

Observe that for each case and θ-interval in table 6.2, there exists a positive value a and some
value δ with −π ≤ δ ≤ π such that rk,up(θ) = a/sin(θ+ δ). Given this a and δ, the antiderivatives
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of f1, . . . , fn are:

F1(d, θ) = a ln

(
tan

(
θ + δ

2

))
F2(d, θ) = (d+Rmax)θ

F3(d, θ) = (d+Rmin)θ

F4(d, θ) = fmax(d, θ) (see equation 6.26)

F5(d, θ) =

{
0 if d ≤ −ra − rmin

fmin(d, θ) otherwise (see equation 6.26)

Now in order to evaluate equation 6.38, the dθ-interval sets Y1, . . . , Yn have to be known. For the
derivation of Y1, . . . , Yn we will make use of the following definition and lemma.

Definition 11. We define ⊗ as the binary operator on dθ-interval sets, of which the result is
another dθ-interval set, with the following property for each pair Ya, Yb of dθ-interval sets:

∀(d, θ) ∈ R× R : (d, θ) ∈ C(Ya ⊗ Yb) ⇐⇒ (d, θ) ∈ C(Ya) ∩ C(Yb)

Lemma 6. Let f1, . . . , fn be a set of n functions such that for each i, with 1 ≤ i ≤ n, fi:R×R→
R. Let g1, . . . , gn a set of functions such that for each i, with 1 ≤ i ≤ n, function gi:R × R → R
is defined as follows:

gi(d, θ) =

{
hi−1(gi−1(d, θ), fi(d, θ)) if i > 1

f1(d, θ) if i = 1

where for each j < i:

hi−1(fj(d, θ), fi(d, θ)) = fk(d, θ) where k = i or k = j

Furthermore we define for each i and j, with 1 ≤ i < n and 1 ≤ j ≤ i, the sets βi,j and αi,j
to be some dθ-interval sets satisfying: (i) for each (d, θ) ∈ R × R, either (d, θ) ∈ C(βi,j) and
hi(fj(d, θ), fi+1(d, θ)) = fj(d, θ) or (d, θ) ∈ C(αi,j) and hi(fj(d, θ), fi+1(d, θ)) = fi+1(d, θ), (ii)
the Lebesgue measure of C(αi,j)∩C(βi,j) equals 0. We use symbol Yi,j for i and j, with 1 ≤ i ≤ n
and 1 ≤ j ≤ i, for a dθ-interval set for which gi(d, θ) = fj(d, θ) for each (d, θ) ∈ C(Yi,j). We
furthermore require that for each i, with 1 ≤ i ≤ n, we have C(Yi,1) ∪ C(Yi,2) ∪ . . . ∪ C(Yi,i) =
R × R and that for each j1 and j2, with 1 ≤ j1, j2 ≤ i and j1 6= j2, the Lebesgue measure of
C(Yi,j1) ∩ C(Yi,j2) equals 0. Then Yi,j can be computed by induction as follows:

Yi,j =


Yi−1,j ⊗ βi−1,j if j < i⋃i−1
k=1 Yi−1,k ⊗ αi−1,k if j = i

{((−∞,∞), {(d 7→ −∞, d 7→ ∞)})} if i = 1

(6.39)

Now if we choose
h1 = min, h2 = max, h3 = min, h4 = max

then g = g5 = r′k,max and dθ-intervals sets Y1, Y2, . . . , Y5 are equal to Y5,1, Y5,2, . . . , Y5,5. For our
choice of f1, . . . , fn and h1, . . . , h4, appendix C lists the βi,j sets as defined in lemma 6. An αi,j
set as defined in lemma 6 can be seen as a kind of complement of βi,j . The αi,j sets can easily
be derived from the corresponding βi,j sets listed in appendix C and are therefore not listed in
this thesis. Using the βi,j and αi,j sets, the dθ-interval sets Y1, Y2, . . . , Y5 can be computed by
following equation 6.39.

Summary of the approach. Let us summarize the approach presented in this section. We
adapt the formulation of the integral of equation 6.25 over the circles in A such that it integrates
over A∩B (see equation 6.32). This adaptation includes the introduction of rk,low(θ) and rk,up(θ),
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which is the lower bound and upper bound respectively as a function of θ for the rk parameter
of all circles in B. Table 6.2 lists for each of the 9 considered cases of B’s position relative to
the x′ and y′-axis, intervals for circle parameter θ and for each of these intervals a corresponding
closed-form expression for rk,low(θ) and rk,up(θ). The integral of equation 6.32 is split into integrals
of which each corresponds to a θ interval of table 6.2 and is of the same form as equation 6.35
or 6.36. As result, we only have integrals in which rk,low(θ) and rk,up(θ) can be written as a
single closed-form expression. Depending on the value of θ and d, the integrand r′k,max(d, θ) of
equation 6.35 is either rk,up(θ), d+Rmax, d+Rmin, rk,max(d, θ) or rk,min(d, θ) (see equation 6.34).
These different functions obviously have different antiderivatives. We therefore split up the integral
of equation 6.35 into integrals over intervals of d and θ for which r′k,max(d, θ) is either rk,up(θ),
d+Rmax, d+Rmin, rk,max(d, θ) or rk,min(d, θ) for each d, θ value in such interval. These intervals
are represented by the dθ-interval sets Y1, . . . , Y5, which can be computed by following lemma 6.
Given Y1, . . . , Y5 and the known antiderivatives of rk,up(θ), d + Rmax, d + Rmin, rk,max(d, θ) and
rk,min(d, θ), equation 6.38 provides a solution for equation 6.35. This solution only contains a
one-dimensional integral over circle parameter d, which (as the solution found in section 6.6.2) can
be numerically evaluated by iterating over the d bins of the histogram illustrated in figure 4.30.
In a similar way we can solve integrals of the form of equation 6.36, and therefore the presented
approach gives us a solution that can be used for the evaluation the integral over A ∩ B as in
equations 6.31 and 6.32.

6.6.4 Integration over A ∩B ∩ V
We will now show how an approximation of the visibility space V only requires a few simple
modifications to the approach presented in section 6.6.3 in order to evaluate equation 6.16:∫

A∩B∩V
p(zp | k) dk

Recall the definition of the visibility space V from section 6.5: space V is the set of circles that
intersect the region that can be observed by a particular layer of the laser scanner. The region
that can be observed by the laser scanner is defined by the position of the laser scanner, its field
of view, a minimum distance and a maximum distance.

We approximate V by the set V ′. Let k be a circle and p be the point on k that is closest
to the point measurement zp. Then circle k is in V ′ if and only if p is in the region that can be
observed by the laser scanner.

Now let us first have a look at the differences between V and V ′. Observe that V ′ ⊆ V : if a
circle k is in V ′ then there exists a point on k (namely the point on k closest to zp) that is in the
region that can be observed by the laser scanner, and therefore circle k intersects with the region
that can be observed by the laser scanner, which means that k is also in V . Circles that are in V
but not in V ′ are those circles that intersect the region that can be observed by the laser scanner,
but of which the closest point to zp is not within this observable region. Note from equation 6.13
and figure 4.30, that p(zp | k) = 0 if the distance from zp to its k closest point p is more than
0.4 m. This means that if point measurement zp is more than 0.4 m from the border of the region
that can be observed by the laser scanner, then using the approximation V ′ gives the same results
as V : ∫

A∩B∩V ′
p(zp | k) dk =

∫
A∩B∩V

p(zp | k) dk

How well V is approximated by V ′ has not been investigated further since for the verification
method’s analysis in section 6.7 we can focus on point measurements that are more than 0.4 m
away from the border of the observable region.

Let us now turn to the modifications that are necessary to the method of section 6.6.3 for the
computation of equation 6.16 where V is approximated by V ′. Note that for a circle k, point p is
defined relative to zp by the circle’s d and θ parameters. Observe that for a given d we need at
most five intervals to describe those values for θ for which p is inside the observable region (five
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Figure 6.8: The bright blue area is the region that can be observed by the laser scanner and the black line
is the line passing through zp and the centre of the annulus that is to the right of point zp. The illustrated
circle consists of those points for which the distance to zp is d. The dashed part are those points that are
outside the observable region. The solid part are those points that are inside the observable region. Let
θ ∈ [−π, π] be the angle between the vector from zp to a point p on the circle and the vector between zp
and the centre of the annulus. Then the values of θ for which point p is inside the observable region, can
be described by five intervals as illustrated in this figure. Note that the solid part of the circle in the lower
left corner of the observable region is described by two intervals: one ending at π and one starting at −π.

instead of four since we only allow θ values of the interval [−π, π]), as illustrated in figure 6.8. Let
ΘV,1(d), . . . ,ΘV,5(d) be these five intervals. Now equation 6.32 for the integral over A ∩B can be
modified to the integral over A ∩B ∩ V ′:∫

A∩B∩V ′
p(zp | k) dk =

5∑
j=1

1

2π

∫ ra−rmin

ra−rmax

p(d)

∫
Θ′(d)∩ΘV,j(d)

(
r′k,max(d, θ)− r′k,min(d, θ)

)
dθ dd

(6.40)

Similar to equation 6.32, each of the terms in this equation can be rewritten to the form of
equation 6.38 which represents a solution for the integral.

6.7 Analysis of the Method

This section presents an analysis of the presented map verification method for roundabout central
islands. The analysis shows the results are not satisfactory for the intended goal of the method.
It is also shown that the causes of these unsatisfactory results are not specific to the method’s
application for verifying central islands, but to the verification method in general. One of the causes
of this unsatisfactory result can be traced back to the assumption of conditionally independent
measurements given the correctness of the map, but, as we will see, this is not the only cause.

6.7.1 Analysis of the Central Island Implementation

We will now have a look at what the output of the central island map verification method is for
a certain scenario and different measurement values. Instead of only evaluating the final output,
we also look at the intermediate measurement probability densities that were computed by the
method in order to get a better understanding of the final output.

In the scenario used for this evaluation, the digital map describes a central island by an annulus
with centre x-coordinate 40 m, centre y-coordinate 0 m, inner radius rmin = 11.8 m and outer radius
rmax = 12.2 m. The minimum radius Rmin and maximum radius Rmax of a central island that
can be detected by the central island detector are set to 7 m and 18 m respectively. The sensor is
located at the origin, it points in the x-direction, has a field of view of 84°, a minimum range of
20 m and a maximum range of 50 m.
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The probability density distributions for the circle-centre measurement and for the point mea-
surement’s distance to the circle border were generated from the histograms in figure 4.27 and
4.30, which were obtained by the central island detector’s evaluation.

Recall equation 6.12 for the probability density of a measurement z given the correctness c of
a map:

p(z | c) =


p(O = true | c) · γA∩V ·

∫
A∩V p(z | xz) dxz

+ p(O = false | c) · γV \A ·
∫
V \A p(z | xz) dxz

if c = true

γV \A ·
∫
V \A p(z | xz) dxz if c = false

where the integral

γA∩V ·
∫
A∩V

p(z | xz) dxz (6.41)

represents the probability density of measurement z given the fact that the measured element (a
circle in this case) is inside visibility space V and inside annulus A, and integral

γV \A ·
∫
V \A

p(z | xz) dxz (6.42)

represents the probability density of measurement z given the fact that the measured circle is
inside visibility space V and outside annulus A.

For the verification of the map description of a central island, the measurement z was chosen to
consist of two measurements: a point measurement zp and a circle-centre measurement zc. Before
we evaluate the probability density distributions for the combination of measurements zp and zc,
we first have a look at the distribution for the point measurement zp (i.e. equations 6.41 and 6.42
where z is substituted by zp).

Figure 6.9 shows the distribution for zp given that the measured circle is not in annulus A. One
can clearly recognize the shape of the sensor’s visibility region, which makes sense since outside
this region it is impossible to measure a point and therefore the probability density is zero and
inside this region there will always be a set of circles for which the measured point has a non-zero
probability density.

Figure 6.10 shows the point measurement’s probability density for points near the annulus.
Note that compared to figure 6.9 the range of the colour map has been adjusted in order to
visualize the small drop in the density for points near the annulus. The reason for this density
drop can be explained as follows: the closer the measured point is to the annulus, the more circles
for which the point has a non-zero probability density are inside the annulus and those circles
will not contribute to the integral of equation 6.41. The drop in the probability density near the
annulus is relatively small, since the number of circles inside the annulus is a lot smaller than the
number of circles that are outside the annulus and inside the visibility region.

Figure 6.11 shows the point measurement’s probability density distribution given that the
measured circle is inside annulus A. As one would expect, this is an almost rotational symmetric
distribution with the annulus’ centre as the symmetry axis. It is not entirely rotational symmetric,
since the point measurements outside the visibility region have a zero probability density. The
shape of this distribution is better visualized by figure 6.12 which shows the probability density
as a function of zp’s x-coordinate where the y-coordinate is zero.

Let us now focus on the probability density distribution of a complete measurement z which
consists of a point measurement zp and a circle centre measurement zc. Since it is hard to visualize
a four-dimensional probability space, we plot the probability density as a function of the point
measurement’s coordinates for a fixed value of the measured circle centre.

Figure 6.13 shows the probability density of a measurement given that the origin of the mea-
surement is outside annulus A, for a measured centre with value (40.0 m, 0.0 m). The illustration
shows a disc-shape that is a bit more stretched in the x-direction than in the y-direction, be-
cause a centre measurement (with y-coordinate equal to 0.0 m) has a greater uncertainty in the
x-direction than in the y-direction (see figure 4.27). The position of this disc shape depends on
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Figure 6.9: The probability density of the point measurement zp given that the measurement’s origin is not
in A: γV \A ·

∫
V \A p(zp | xz) dxz. In this image, the x and y-coordinates represent the x and y-coordinates

of the measured point zp and the colour represents the probability density for those measured coordinates.
The small rectangle marks the region that is illustrated in figure 6.10 with an adjusted colour scale.
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Figure 6.10: The probability density of the point measurement zp given that the measurement’s origin
is not in A: γV \A ·

∫
V \A p(zp | xz) dxz. In this image, the x and y-coordinates represent the x and y-

coordinates of the measured point zp and the colour represents the probability density for those measured
coordinates. Shown here is the area near the annulus, which in this image is between x-coordinates 27.8 m
and 28.2 m.
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Figure 6.11: The probability density of the point measurement zp given that the measurement’s origin is
in A: γA∩V ·

∫
A∩V p(zp | xz) dxz. In this image, the x and y-coordinates represent the x and y-coordinates

of the measured point zp and the colour represents the probability density for those measured coordinates.
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Figure 6.12: The probability density of the point measurement zp given that the measurement’s origin is
in A, as a function of zp’s x-coordinate: γV ∩A ·

∫
V ∩A p(zp | xz) dxz, where zp’s y-coordinate is zero. The

grey shaded area corresponds to the x-coordinates that are within the annulus.
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Figure 6.13: The probability density of the measurement z = (zp, zc) given that the measurement’s origin
is not in A, as a function of zp: γV \A ·

∫
V \A p(zp, zc | xz) dxz, where zc = (40.0 m, 0.0 m). In this image, the

x and y-coordinates represent the x and y-coordinates of the measured point zp and the colour represents
the probability density for those measured coordinates.

the actual measured centre zc, which can also be seen in figure 6.14 where for different values
of zc’s x-coordinate the probability density is plotted as function of zp’s x-coordinate where zp’s
y-coordinate is zero. Around x = 28 m, which is the area around the annulus, there is a small dip
in three of the distributions. These dips can be explained by the fact that for those (zp, zc) values
there exist circles inside A for which the probability density of measurement values zp and zc is
non-zero. For the centre measurements with 37 m or 38 m as its x-coordinate there is no such dip,
because for such centre measurements there is no circle inside annulus A for which the centre zc
measurement has a non-zero probability density.

Figure 6.15 shows the probability density of a measurement given that the origin of the mea-
surement is inside annulus A, for a measured centre with value (40.0 m, 0.0 m). As one would
expect, the probability density is high for points inside and near the annulus and lower for points
further removed. Figure 6.16 shows for different values of zc’s x-coordinate, the probability density
as a function of zp’s x-coordinate, where zp’s y-coordinate is zero. It shows that the probability
density is lower if the measured centre zc is further away from the annulus’ centre, which makes
sense since in such case the probability density of the centre measurement will be lower for each
origin circle inside the annulus.

Above we analysed the probability density distributions given by equations 6.41 and 6.42. Once
these probability densities have been computed for a measurement, they can be used to compute
the probability density p(z | c) of measurement z given the correctness c of the map by applying
equation 6.12. In order to compute p(z | c), we also need to know the probability to detect the
central island described in the map given that the map is correct, p(O = true | C = true). In
the following example we chose this probability to be 0.3; choosing a different value will have no
significant influence on the outcomes in the sense that it would change the conclusions drawn in
this chapter. The computed value of p(z | c) together with the a priori map correctness probability
p(c | m0:t−1) can now be used to compute the a posteriori map correctness probability p(c | m0:t)
by applying equation 6.4. For the following example we assume an a priori probability of 0.5 for
the map being correct.
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Figure 6.14: For different values of the measured centre zc, the probability density of the measurement
z = (zp, zc) given that the measurement’s origin is not in A, as a function of zp’s x-coordinate: γV \A ·∫
V \A p(zp, zc | xz) dxz, where zp’s y-coordinate is zero. The grey shaded area corresponds to the x-

coordinates that are within the annulus.
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Figure 6.15: The probability density of the measurement z = (zp, zc) given that the measurement’s origin
is in A, as a function of zp: γV ∩A ·

∫
V ∩A p(zp, zc | xz) dxz, where zc = (40.0 m, 0.0 m). In this image, the

x and y-coordinates represent the x and y-coordinates of the measured point zp and the colour represents
the probability density for those measured coordinates.
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Figure 6.16: For different values of the measured centre zc, the probability density of the measurement z =
(zp, zc) given that the measurement’s origin is in A, as a function of zp’s x-coordinate: γV ∩A ·

∫
V ∩A p(zp, zc |

xz) dxz, where zp’s y-coordinate is zero. The grey shaded area corresponds to the x-coordinates that are
within the annulus.

Figure 6.17 shows the a posteriori probability of the map being correct p(C = true | m0:t), as
a function of the coordinates of the measured point zp, where the circle centre measurement zc
has coordinates (40.0 m, 0.0 m) (i.e. the same zc value as used for figures 6.13 and 6.15). Note that
figure 6.17 does not visualise a probability density function, but instead it shows the conditional
probability of C being true (i.e. the map being correct) given all measurements done thus far m0:t,
as a function of its last point measurement zp. One may notice that for point measurements in
a large part of the visibility region, the a posteriori probability is 0.5. This is because within
this region both the measurement probability density given that the origin is outside the annulus
(equation 6.42) and the measurement probability density given that the origin is inside the annulus
(equation 6.41), is exactly zero. In such case the measurement’s probability density is the same
for the case where the map is correct and the case where it is incorrect, and therefore such a
measurement will not increase or decrease the a priori probability 0.5 of the map being correct. We
furthermore see that another large region of point measurements causes the a posteriori probability
to be approximately 0.4. This is because in that region the measurement’s probability density,
given that its origin is inside the annulus, is exactly zero (i.e. the first term for the case c = true
in equation 6.12). Consequently the probability density p(z | C = true) of the measurement,
given that the map is correct, is exactly p(O = false | C = true) = 0.7 times the probability
density p(z | C = false) of the measurement given that the map is incorrect. Plugging this into
equation 6.4 in combination with an a priori probability of 0.5, gives us indeed a posteriori map
correctness probability of approximately 0.4.

As can be expected, figure 6.17 shows that the a posteriori probability p(C = true | m0:t)
is higher the closer the point measurement is to the annulus. Figure 6.18 shows for zp with y-
coordinate equal to zero and the same zc values as used in figures 6.14 and 6.16, the a posteriori
probability as a function of the point measurement’s x-coordinate. We see that for different
values of zc, the shape of the a posteriori probability as a function of zp is roughly the same,
except when zc is too far from the annulus’ centre in which case the a posteriori probability is
a constant function of zp. One can see that if a point measurement is made within the annulus,
that the a priori probability will be a value very close to 1. This is not only the case for points
inside the annulus, but also for points that are 20 cm or less away from the annulus’ border.
As can be seen in figure 6.16, the probability density of a point measurement at x < 27.5 m,
given that the measurement’s origin circle is in the annulus, is very low. However for the case
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Figure 6.17: For a priori probability for the map being correct p(C = true | m0:t−1) = 0.5 and latest
centre measurement zc = (40.0 m, 0.0 m), this figure shows the a posteriori probability p(C = true | m0:t)
as a function of the latest point measurement’s coordinates zp.

zc = (40.0 m, 0.0 m), the a posteriori probability for the map being correct has increased compared
to its a priori probability for point measurements with an x value between 27.2 m and 27.5 m,
which is also the case for other a priori probabilities as can be observed in figure 6.19. Although
this may be surprising, it still makes sense because the probability density of a measurement given
that the map is incorrect is always several orders of magnitude lower than the highest probability
density for a measurement given that the map is correct (as can be concluded from figures 6.13
and 6.15), and the a posteriori probability of the map being correct is only lower than its a priori
value if p(z | C = true) < p(z | C = false).

6.7.2 Evaluation

As discussed in the previous subsection, the a posteriori probability of the map being correct
quickly approaches 1 after only one measurement near the annulus. Probabilistically this makes
sense and can be explained as follows. Let x1 be a circle inside the annulus with a certain
probability density p(z | Xz = x1) for the measurement z, given that x1 was the origin of this
measurement. Now let x2 be a circle outside the annulus such that p(z | Xz = x1) = p(z | Xz =
x2). So that means that if the map would be known to be been incorrect and the measurement
origin known to be x2, then the probability density for measurement value z is equal to its
probability density in the case the map is known to be correct and the measurement origin is
known to be x1. However the probability density p(Xz = x2 | C = false) for x2 being the
measurement origin in case of an incorrect map, is much smaller than the probability density
p(Xz = x1 | C = true) for x1 being the origin in case of a correct map. This is because we
modelled each circle outside the annulus equally likely to be measured, and each circle inside the
annulus equally likely to be measured, and the Lebesgue measure of the set of circles outside the
annulus is larger compared to the set of circles inside the annulus (in simple language: there are
“more” circles outside the annulus than inside the annulus). Consequently the contribution of
p(Xz = x2 | C = false) · p(z | Xz = x2) to the integral of equation 6.42 will be much smaller than
the contribution of p(Xz = x1 | C = true) · p(z | Xz = x1) to the integral of equation 6.41. As a
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Figure 6.18: For different values of latest centre measurement zc, the a priori probability for the map
being correct p(C = true | m0:t−1) = 0.5 and latest point measurement zp having y-coordinate equal to
zero, this figure shows the a posteriori probability p(C = true | m0:t) as a function of zp’s x-coordinate.
The grey shaded area corresponds to the x-coordinates that are within the annulus.
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Figure 6.19: For different values of the a priori probability for the map being correct p(C = true | m0:t−1),
latest centre measurement zc = (40.0 m, 0.0 m) and latest point measurement zp having y-coordinate equal
to zero, this figure shows the a posteriori probability p(C = true | m0:t) as a function of zp’s x-coordinate.
The grey shaded area corresponds to the x-coordinates that are within the annulus.
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result, measurements that may not seem very probable in case of a correct map, may still cause
the a posteriori probability for the map being correct to be higher than its a priori probability.
Although probabilistically justifiable at first sight, we should question whether it is desirable to
have such a drastic increase in the probability of the map being correct.

What if a measurement is false/noise? Then also in such case the a posteriori probability
will be close to 1. However one should realize that probability theory will never give guarantees
about a hypothesis being true. Even if you are very certain about a hypothesis being true because
you found the probability for that to be nearly 1, there is still a chance that the hypothesis is
false. This is also the case with false/noise measurements: their probability to occur is very low.
The verification model can also handle noise cases: despite the fact that the probability jumps to
nearly 1 after the noise measurement near the annulus, all following measurements being far away
from the annulus will make the probability decrease again (although this decrease is at a lower
rate than the increase to 1, as can be concluded from figure 6.19).

Let us consider the case where the map is incorrect and where the real-world central island
has the same centre as the annulus but a radius of 12.7 m (recall that in our running example the
outer radius of the annulus is 12.2 m). In that case most point measurements will be around 50 cm
away from the annulus’ border, which will be around x = 27.3 m in figure 6.19. As concluded in
the previous subsection, after such a measurement the probability of the map being correct will
have been increased. Unlike the short increase of the probability after a noise measurement, which
eventually will decrease, in this case the probability will not decrease afterwards because most
following measurements will have a similar distance to the annulus’ border. So after a number of
measurements the probability of the map being correct will be nearly 1 and will remain nearly
1. This result is undesirable for two reasons. First, it is not very unlikely that an infrastructure
element is modified and, in the case of a roundabout, that the central island gets a bigger radius.
We therefore want to be able to detect such an infrastructure modification that makes the map
incorrect. Second, if we keep getting measurements that are about 50 cm away from the annulus’
border, then it is likely that we are indeed measuring a real-world circle that has its border 50 cm
away from the annulus’ border and that therefore the map is probably incorrect. As we saw before,
quite the opposite is true for the proposed verification method as such measurements are always
in favour of hypothesis that the map is correct. It can therefore be concluded that the results of
the implemented verification method are unsatisfactory.

6.7.3 Causes of Unsatisfactory Results

Section 6.7.2 identified two problems: the rapid increase of the map-correctness probability after
just a single measurement and the problem illustrated by the incorrect-map example, where a
repeated number of measurements that seem more likely to support an incorrect-map hypothesis
still make the map-correctness probability increase. The former problem can be explained by
the lack of a priori knowledge we have about the measured element. The latter problem can be
attributed to the assumption of conditional independence between the measurements. Both causes
are discussed in more detail below.

Lack of a priori knowledge about the measured element As already indicated in the
previous subsection, the main cause of a dramatic increase of the map-correctness probability after
just a single measurement, is the fact that we consider each element outside A to be equally likely to
be measured and each element inside A equally likely to be measured. As mentioned in section 6.4
the choice for a uniform distribution (for Xr) motivated by the principle of indifference, may be
debatable. However, even if one would choose a non-uniform probability density distribution, then
this still has to be a wide spread distribution, because we have no further knowledge about the
parameter values of the element that was measured. Furthermore for the verification of roundabout
central islands, the set of visible elements not in A is much larger than the set of visible elements
in A and thus the probability densities for the former will still be a lot less than for the latter. This
means that choosing a different probability density distribution for the parameters of Xr, which is
“fair” considering the lack of knowledge we have about the parameters of the measured element,
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will not solve the problem of the rapid increase of the map-correctness probability after just a single
measurement. The root cause seems to be the lack of knowledge about the value for the parameters
of the measured elements and the inability to express this lack of knowledge in a probabilistic way.
This cause is in fact independent of the assumption of conditionally independent measurements of
equation 6.3, since it also causes a rapid increase of the map-correctness probability after the first
measurement (since in that case there is only measurement, the assumption cannot be violated).
Nevertheless, as we will see, the assumption has an effect for all measurements following the first
one.

Conditional measurement independence assumption Let us have a look at the effect of
the conditionally independent measurement assumption of equation 6.3, by considering the case
where this conditional independence does not hold. Then equation 6.4 for the a posteriori map
correctness probability becomes

p(c | m0:t) = ηt · p(zt | c,m0:t−1) · p(c | m0:t−1)

Here p(zt | c,m0:t−1) can be rewritten in a similar way as in section 6.4 while considering the
dependence of the measurements. Equation 6.7 then becomes:

p(z | C = true, O = true,m0:t−1) =

∫
A∩V

p(z | xz, C = true, O = true,m0:t−1)

· p(xz | C = true, O = true,m0:t−1) dxz

Note we still assume that the measurement z is conditionally independent of the previous measure-
ments m0:t−1 given the measurement’s origin xz (see equation 6.2). Therefore the above equation
can be rewritten to:

p(z | C = true, O = true,m0:t−1) =

∫
A∩V

p(z | xz) · p(xz | C = true, O = true,m0:t−1) dxz (6.43)

The difference between this equation and equation 6.7 for p(z | C = true, O = true), is that
in the latter the second factor of the integrand is p(xz | C = true, O = true) instead of p(xz |
C = true, O = true,m0:t−1). This factor is factored out of the integral as a constant (γA∩V )
which results in equation 6.8, because the probability density for each element inside A ∩ V is
assumed equal. However in the equation above, p(xz | C = true, O = true,m0:t−1) cannot be
factored out of the integral, because the distribution density distribution of the measured element
Xz is not uniform within A∩V . This is because the measurements M0:t−1 and measured element
Xz are conditionally dependent and therefore p(xz | C = true, O = true,m0:t−1) differs from
p(xz | C = true, O = true).

Similar to above, when we do not assume the conditional independence of measurements as in
equation 6.3, equation 6.9 becomes

p(z | C = true, O = false,m0:t−1) =

∫
V \A

p(z | xz) ·p(xz | C = true, O = false,m0:t−1) dxz (6.44)

and equation 6.11 becomes

p(z | C = false,m0:t−1) =

∫
V \A

p(z | xz) · p(xz | C = false,m0:t−1) dxz (6.45)

Also here, when comparing equations 6.44 and 6.45 with equations 6.10 and 6.11 respectively, we
see that in the latter two the second factor was factored out of the integral as a constant.

Let us return to our invalid-map example of subsection 6.7.2, where after a whole series of mea-
surements 50 cm away from the annulus’ border, the a posteriori correctness probability counter-
intuitively becomes nearly one. We considered such result counter-intuitive, since our intuition
says that if we keep getting measurements 50 cm away from the annulus’ border, then most likely
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we are measuring a circle outside the annulus and therefore the map is most likely incorrect.
This intuition is confirmed by the equations above. For example in equation 6.45, after the first
measurement p(xz | C = false,m0:t−1) will be higher for values of xz that are “near” the first
measurement than for values of xz that are “further away” from the first measurement. As a
consequence, in our example p(z | C = false,m0:t−1) will be larger than p(z | C = false) for a
measurement that is approximately 50 cm away from the annulus’ border. This means that a
second measurement 50 cm from the annulus’ border in case of an incorrect map is much more
likely because the first measurement was similar.

From the discussion above it can be concluded that the conditional measurement independence
assumption of equation 6.3, is the main cause of the problem presented by the incorrect-map
example in subsection 6.7.2.

6.7.4 Why the problems are hard to solve

We will now discuss some of the difficulties that may arise if we would like to adapt the presented
verification model such that it does not assume the conditional independence of measurements as
in equation 6.3.

Suppose we want to evaluate the measurement probability density value as in equation 6.43.
Unlike equation 6.8 where the integrand is a single probability density function, equation 6.43
is an integral of which the integrand is a product of two probability density functions. Since it
is much harder to come up with an analytical solution (or a partial analytical solution) for such
an integral, in most cases the evaluation of integral 6.43 requires a numerical computation. Since
generally the parameter space of the elements to be verified is multi-dimensional, such a numerical
computation will be very costly in terms of computation time. Similar arguments hold for the
evaluation of equations 6.44 and 6.45. This makes a verification method based on these equations
less usable in practice.

Let us turn to a another problem that arises when we want to consider the conditional de-
pendence between measurements. Observe that in each of the equations 6.43, 6.44 and 6.45,
the second factor is a function of the sequence of all previous measurements m0:t−1. This does
not necessarily mean that the computation of these second factors has to have a computational
complexity proportional to the number of previous measurements. For example, let us consider
the evaluation of p(xz | C = true, O = true,m0:t−1), which is the probability density for value
xz for the parameters of the measured real-world element that is described by the correct map
given all previous measurements m0:t−1. It may be possible to formulate this probability den-
sity recursively as a function of the second last measurement zt−1 and the probability density
p(xz | C = true, O = true,m0:t−2) given all previous measurements except the second last one.
Instead of an algorithm that computes the probability density with a computational complexity
proportional to the number of previous measurements, such recursive formulation can be used
to construct an algorithm that incrementally computes the probability density with a constant
complexity in terms of the number of previous measurements. The downside of such an algorithm,
however, is that it must not only maintain the map correctness probability p(C = true | m0:t)
given all measurements, but also the probability density distribution for the real-world element
inside A given that the map is correct. In that case the algorithm is in fact explicitly estimating
the state of the environment element (only for the case of a correct map though), something which
we wanted to avoid (see the motivation for map verification in section 6.1).

Apart from the reasons for avoiding explicit estimation of the real-world element’s parameters
that motivate the need for a priori map data, there is another problem with explicit estimation.
Consider the factors p(xz | C = true, O = false) and p(xz | C = false) in equations 6.44 and 6.45
respectively. These are the probability densities of the parameters for the real-world element that
is the origin of the latest measurement for two different cases in which this origin must be outside
A (the case where the map is correct but the origin is not the mapped real-world element and the
case of an incorrect map). Since there can be multiple real-world elements in the environment, it
is possible that the current measurement has a different origin than the previous measurement.
Consequently, instead of recursively estimating the parameters of a single environment element,
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the algorithm has to estimate the set of elements in the environment. What makes such a task far
from trivial, is the fact that one does not know in advance the number of environment elements and
that it requires a solution for the association of measurements with real-world elements. Although
this is not an impossible problem to solve in specific cases, it is hard to come up with a general
solution that does not introduce a dramatic increase of the problem’s complexity. Furthermore
such a verification method will differ little or nothing from a method that estimates the parameters
of the environment elements and that computes the probability of the map being correct based
on this estimation. Again the absence of such an estimation method is one of the motivations for
map verification.

From the above can be concluded that it is far from trivial to come up with a probabilistic
verification model that does not assume the conditional measurement independence of equation 6.3
and the question can be asked whether, due to lack of knowledge about the real world, probability
theory offers us a suitable framework to practically solve the map verification problem at all.

6.8 Conclusions and Recommendations for Future Work

One of the contributions of this chapter is the discussion of the motivation for map verification,
possible ways to cope with incorrect map data, and the requirements on a map verification system
derived from this discussion. The list of requirements is by no means meant to be complete, but
should be seen as an initial attempt to specify the new field of research of verifying a priori map
data for highly automated driving. Future research has to be done on how the automated vehicle
system copes with blind spots in its perception as the result of incorrect map data. Specifically,
research should focus on the development of behaviour planning algorithms that can generate safe
behaviour in case of blind spots. This kind of research can help in making the requirements on a
map verification system more specific.

This chapter also investigated a probabilistic model for map verification that assumes sensor
measurements to be conditionally independent given the correctness of the map. The advantage of
such an approach would be that the map verification problem can be solved by means of recursive
state estimation (where the map’s correctness is the state to be estimated). From the analysis,
based on an implementation of the model for the verification of roundabout central islands, it can
be concluded that the model does not provide satisfactory results.

One unsatisfactory effect that was observed, is the rapid increase of the probability that the
central island is correctly described by the map after only a single measurement that leaves the
hypothesis of an incorrect map is still plausible. This is mainly caused by the lack of a priori
knowledge we have about the measurement in case of an incorrect map.

A second problem that was observed, is that in some cases of an incorrect map, the probability
that the map is correct increases during a series of measurements that seem more likely to support
an incorrect-map hypothesis. This problem can be attributed to the assumption of conditional
independence between the measurements. Adapting the proposed verification model such that the
conditional dependence between measurements is taken into account will give rise to three new
problems. First, the computation of the map correctness probability involves computing integrals
of the product of two functions which in practice will be hard to solve analytically. Thus such a
computation will be computationally expensive. Second, the resulting verification model performs
an estimation of the parameters of the environment elements that were observed by the sensors.
The lack of perception algorithms to estimate the parameters of an environment element is the
main motivation for using a priori map data and the verification of map data. It will therefore be
very unlikely that a map verification method will be practically useful if it is based on parameter
estimation. The third problem, is that such parameter estimation requires the system to be able
to distinguish different environment elements as origins of measurements and to correctly associate
a new measurement to existing measurements of the same environment element. It will be very
unlikely that this can be done for environment elements for which we want to use an a priori map
for the perception (i.e. those environment elements for which no sensor-based perception can be
used). Overall it can be concluded that adapting the verification model such that the dependence
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between measurements is considered, leads to a practically unusable map verification model.
Future research can consider other ways to model the verification problem probabilistically,

where the biggest challenge will be to model our lack of a priori knowledge about measurements in
case of an incorrect map. Alternatively, non-probabilistic models can be formulated to solve the
map verification problem. The main challenge will then be to develop a measure for the output of
the verification system to express the uncertainty about the correctness of the map, that allows a
proper risk analysis by the behaviour planning system.

One of the requirements for a map verification system that was not addressed by the proposed
verification model is the consideration of the interdependence between the map verification problem
and the map-relative localization problem. Future research should consider this independence and
a solution may be based on simultaneous localization and verification.
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Chapter 7

Conclusions and
Recommendations for Future
Research

This chapter summarizes the contributions of the thesis, its main conclusions and recommen-
dations for future research. Detailed conclusions for each individual topic can be found in the
corresponding chapters.

Multi-Hypothesis Road Representation. Chapter 3 explained that perception of a road-
way can be subject to uncertainty about the structure of a roadway and that consequently the
perception system can have multiple plausible hypotheses about the roadway. The chapter pre-
sented a multi-hypothesis road representation with the goal of eliminating the requirement on the
perception system to present only a single roadway hypothesis to the behaviour planning system.
Consequently, with this representation the behaviour planning system can consider all plausible
(possibly conflicting) hypotheses. The representation allows multiple hypotheses about the road-
way and is designed in such a way that it is easy to infer where and how the hypotheses about the
roadway differ and where they are the same. Although the representation itself is not a perception
method, it can be an enabler for sensor-based perception of more complex roads and therefore
contributes to research objective 1: improve the capabilities of sensor-based perception in urban
environments using close-to-market sensors. The added value of multiple hypotheses for behaviour
planning, still needs to be evaluated, and is currently a subject of ongoing research.

The representation can deal with uncertainty about the structure of the roadway by represent-
ing multiple hypotheses, but cannot not yet express the degree of uncertainty about each such
hypothesis. The development of a mathematical model to express the degree of uncertainty, is a
topic for future research.

The representation as it is presented in this thesis, can only represent roadways (i.e. the
portion of the road in-between junctions) and no junctions. The reason for this is that sensor-
based perception, without depending on a priori maps, will most likely be possible for roadways
before it is possible for junctions. As soon as the multi-hypothesis representation proved itself
useful (or maybe even necessary) at roadways, future research on extending the representation
with the representation of junctions will be an important next step.

Roundabout Central Island Detection. A more ready-to-use contribution to research ob-
jective 1 is made by the roundabout central-island detector presented in chapter 4. Sensor-based
perception of roundabouts for highly automated driving has not been a topic of research so far
and therefore the central-island detector makes a first contribution to it. The detection algorithm
is based on the detection of circular arcs in single-layer laser scans and fitting circles to those
arcs. It hereby relies on scans from a type of laser scanner that only has a few layers and is a
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close-to-production automotive component. Apart from contributing to research objective 1, the
detector also makes a contribution to research objective 4: develop methods for the perception of
roundabouts.

An extensive evaluation of the detection method was done at six different roundabouts based
on a highly accurate ground truth for the roundabout’s geometry. The evaluation showed that
if a laser scan contains a circular arc corresponding to a central island, then in 98% of the cases
the algorithm successfully detected the central island. The detected circles provide an accurate
description of the central island’s geometry at those locations where it was measured. At other
locations the circle can be less accurate caused by errors in the estimation of the circle’s radius.
Although these results are considered very satisfying, there is still room for improvement.

One possible point of improvement is the laser scanner’s capability of measuring central island
borders. Not only the performance of the detection algorithm was analysed but also the quality of
its input data (i.e. laser scans). These analyses showed that the fraction of laser scans that contain
circular arcs corresponding to the central island differs heavily among the different roundabouts.
There were even roundabouts where certain recordings, in which the vehicle is approaching the
roundabout, contained no arcs corresponding to the central island. Future research is needed to
identify the causes for these differences (a few ideas are discussed in section 4.6).

Another point of improvement is the number of circles that are detected but do not correspond
to a roundabout central island. The evaluation showed that 22% of the detected circles does
not correspond to a central island. It has to be noted, however, that each detection is still a
correct detection of a circular arc, which means that as a circle detector the algorithm makes
no false detections. Furthermore, chapter 5 shows that by considering all detections during the
time the vehicle approaches a roundabout, the position of the central island can be correctly
estimated despite false detections. Nevertheless, the reduction of the number of false detections
can be useful, especially at those roundabouts where only a few laser scans contain the central
island. One suggestion on how this can be done is to verify a detected central island using a
camera. Since a detection consists of a sequence of points with a three-dimensional position, the
positions of these points can be projected to image coordinates. The challenge is then to develop
an image processing algorithm that can verify whether the region around the image coordinates
of the detection indeed looks like the curb of a central island.

Roundabout Perception Supported by A Priori Map Data. Although the first steps in
roundabout perception have been made with the central-island detector, it is still not possible to
perceive the full roundabout based on sensor data only. Therefore, in quest of research objective 4,
chapter 5 proposes a roundabout perception method that combines sensor-based observations with
a detailed a priori roundabout geometry from a digital map. By this, it also contributes to research
objective 2: develop methods to combine sensor-based perception with data from an a priori map
in order to perceive all relevant environment elements. Only a part of the roundabout model’s
parameters are estimated using on-board sensor observations. The complete roundabout geometry
relative to the ego-vehicle is computed by aligning a detailed geometrical description from an a
priori digital map with the estimated parameters. The proposed method can be considered as a
map-relative localization method that does not depend on a precise GNSS or additional landmarks
in the map.

The sensor-based observations used by the method of chapter 5 consist of the output of the
central-island detector and a state-of-the-art road marking detector that detects the left marking
of the lane over which the vehicle approaches the roundabout. The road marking is tracked by a
state-of-the-art road marking tracker, and is used to estimate the orientation of the roundabout.
The central-island detector of chapter 4 is modified such that it detects central islands with a radius
known from the a priori roundabout map. The centre of the detected central island is tracked by a
particle filter, and is used for estimation of the roundabout’s centre. Based on the analysis of the
central-island detector’s output, a probabilistic measurement model has been developed that is
used by the particle filter. Overall it can be concluded that the presented roundabout perception
method shows very promising results for use in automated driving.
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Future research could be concerned with a performance analysis of a closed-loop automated
driving system that integrates the roundabout perception method. Further analysis on the error
characteristics of the central-island detector’s output may lead to a more detailed measurement
model for tracking the roundabout centre and thereby improve the overall performance. In order
to make the system depend less on a priori map data, future research is necessary to extend the
proposed system by integrating sensor observations of other environment like, for example, the
road curbs splitter islands or the marking of the roundabout’s outer border.

Map Verification. If a priori map data is used for environment perception, then the system
must know whether the map is correct in order to achieve the high level of system robustness that
is required for highly automated driving, hence research objective 3: Formulate and investigate
the problem of verifying the correctness of a priori map data before the vehicle acts on it. For this
purpose, chapter 6 focusses on the on-board verification of a priori map data using the sensors
of the automated vehicle. One of the contributions of this chapter is the discussion about the
motivation for map verification and the requirements on a map verification system. The presented
list of requirements is by no means meant to be complete, but should be seen as an initial attempt
to specify the new field of research of verifying a priori map data for highly automated driving. Not
only is the verification of map data a relevant topic for environment perception, but also for the
field of behaviour planning. Namely, a behaviour planning system must be able to cope with blind
spots in the perception of the environment as the result of incorrect map data. Future research on
such behaviour planning systems may result in more specific requirements on map verification. For
example, given a certain behaviour planning strategy we can derive how far ahead of the vehicle
the map must be verified.

Besides formulating requirements, chapter 6 investigated a probabilistic model for map verifi-
cation that assumes sensor measurements to be conditionally independent given the correctness or
incorrectness of the map. The advantage of such an approach would be that the map verification
problem can be solved by means of recursive state estimation (where the map’s correctness is the
state to be estimated). However, from the analysis based on an implementation of the model for
the verification of roundabout central islands, it can be concluded that the model does not provide
satisfactory results. An evaluation identified the causes for the unsatisfactory results. Although
the presented model did not prove to be a usable solution for map verification, the lessons learned
from its evaluation can be useful for future research on map verification models.
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Appendix A

Roundabouts Used for Evaluation

Below all roundabouts are listed that were used for the evaluations presented in this thesis. For
each roundabout the left most entrance gate in the image, is the entrance gate with ID 0. The
other entrance gates are number increasingly in counter-clockwise direction. All aerial images have
scale 1 : 1200.

name: Casino
central island radius: 16.26 m

outer radius: 22.70 m
centre latitude: 48.7814022009°

centre longitude: 11.3638230157°
curb height: 32 cm
curb photo:

name: MX303
central island radius: 15.74 m

outer radius: 22.51 m
centre latitude: 48.7898582744°

centre longitude: 11.3768617386°
curb height: 12 cm
curb photo:
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name: Lana Grossa
central island radius: 13.31 m

outer radius: 19.92 m
centre latitude: 48.7915336044°

centre longitude: 11.3774006896°
curb height: 10 cm
curb photo:

name: Gymnasium
central island radius: 18.16 m

outer radius: 24.90 m
centre latitude: 48.7973385899°

centre longitude: 11.3649696595°
curb height: 16 cm
curb photo:

name: Gaimersheim Large
central island radius: 12.62 m

outer radius: 19.99 m
centre latitude: 48.8154349785°

centre longitude: 11.3693231295°
curb height: 19 cm
curb photo:
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name: Gaimersheim Small
central island radius: 6.32 m

outer radius: 14.21 m
centre latitude: 48.8107554450°

centre longitude: 11.3690717401°
curb height: 8 cm
curb photo:

Source of the aerial photos:
Geobasisdaten: Bayerische Vermessungsverwaltung

(Bavarian Agency for Surveying and Geoinformation)
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Appendix B

Good-to-Total Central Island
Detection Ratio

Below you can find, for each layer of the laser scanner, the ratio between the number of good
circle detections and the total number circle detections, by the central island detector presented in
chapter 4, as a function of the vehicle’s distance to the border of the central island. These graphs
are based on the data from the evaluation discussed in section 4.6.
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Appendix C

βi,j Sets

This appendix lists the βi,j sets that are used in section 6.6.3, where we consider the functions:

f1(d, θ) = rk,up(θ), f2(d, θ) = d+Rmax, f3(d, θ) = d+Rmin,

f4(d, θ) = rk,max(d, θ), f5(d, θ) = rk,min(d, θ),

h1 = min, h2 = max, h3 = min, h4 = max

For each i, 1 ≤ i < 5, and each j, 1 ≤ j ≤ i, set βi,j is a dθ-interval set (see definition 10) such
that hi(fj(d, θ), fi+1(d, θ)) = fj(d, θ) for each (d, θ) ∈ O(βi,j).

Note that these dθ-interval sets are evaluated for a certain range of θ values such that there exist
a b for which either rk,up(θ) = b/sin(β+θ) for each θ in the range, rk,up(θ) = b/cos(β+θ) for each
each θ in the range. Observe that in both cases rk,up(θ) can be written as rk,up(θ) = a/sin(θ+ δ)
for some positive value a and some value δ with −π ≤ δ ≤ π. For the description of the dθ-interval
sets below, we therefore assume that function rk,up can be written in this form.

Note that in the listed dθ-interval sets, some intervals are omitted for which rk,up(θ), rk,min(d, θ)
or rk,min(d, θ) is negative or for which all d values are less than ra−rmax or greater than ra−rmin.
This is done since these intervals will be masked out anyway by the interval intersections in
equation 6.37.

� β1,1 is the dθ-interval set for which rk,up(θ) < d + Rmax. Here rk,up(θ) = a/sin(θ + δ) for
some positive a and δ with −π ≤ δ ≤ π.

– If a > 0 and −π2 ≤ δ < 0:

β1,1 =
{(

(−∞, −a−Rmax), {(d 7→ −π − δ, d 7→ −π − arcsin( a
d+Rmax

)− δ),

(d 7→ arcsin( a
d+Rmax

)− δ, d 7→ −δ)}
)
,(

(−a−Rmax, a−Rmax), {(d 7→ −π − δ, d 7→ −δ)}
)
,(

(a−Rmax,
−a

sin(δ) −Rmax), {(d 7→ −π − δ, d 7→ −δ),
(d 7→ arcsin( a

d+Rmax
)− δ,

d 7→ π − arcsin( a
d+Rmax

)− δ)}
)
,(

( −asin(δ) −Rmax, ∞), {(d 7→ −π, d 7→ −π − arcsin( a
d+Rmax

)− δ),
(d 7→ −π − δ, d 7→ −δ),
(d 7→ arcsin( a

d+Rmax
)− δ, d 7→ π)}

)}
131



132 C. βi,j Sets

– If a > 0 and −π ≤ δ < −π2 :

β1,1 =
{(

(−∞, −a−Rmax), {(d 7→ −π − δ, d 7→ −π − arcsin( a
d+Rmax

)− δ),

(d 7→ arcsin( a
d+Rmax

)− δ, d 7→ −δ)}
)
,(

(−a−Rmax, a−Rmax), {(d 7→ −π − δ, d 7→ −δ)}
)
,(

(a−Rmax,
−a

sin(δ) −Rmax), {(d 7→ −2π + arcsin( a
d+Rmax

)− δ,
d 7→ −π − arcsin( a

d+Rmax
)− δ),

(d 7→ −π − δ, d 7→ −δ)}
)
,(

( −asin(δ) −Rmax, ∞), {(d 7→ −π, d 7→ −π − arcsin( a
d+Rmax

)− δ),
(d 7→ −π − δ, d 7→ −δ),
(d 7→ arcsin( a

d+Rmax
)− δ, d 7→ π)}

)}
– If a > 0 and 0 ≤ δ < π

2 :

β1,1 =
{(

(−∞, −a
sin(δ) −Rmax), {(d 7→ arcsin( a

d+Rmax
)− δ, d 7→ −δ),

(d 7→ π − δ, d 7→ π − arcsin( a
d+Rmax

)− δ)}
)
,(

( −asin(δ) −Rmax, −a−Rmax), {(d 7→ −π, d 7→ −π − arcsin( a
d+Rmax

)− δ),
(d 7→ arcsin( a

d+Rmax
)− δ, d 7→ −δ),

(d 7→ π − δ, d 7→ π)}
)
,(

(−a−Rmax, a−Rmax), {(d 7→ −π, d 7→ −δ)

(d 7→ π − δ, d 7→ π)}
)
,(

(a−Rmax, ∞), {(d 7→ −π, d 7→ −δ),
(d 7→ arcsin( a

d+Rmax
)− δ,

d 7→ π − arcsin( a
d+Rmax

)− δ),
(d 7→ π − δ, d 7→ π)}

)}
– If a > 0 and π

2 ≤ δ ≤ π:

β1,1 =
{(

(−∞, −a
sin(δ) −Rmax), {(d 7→ arcsin( a

d+Rmax
)− δ, d 7→ −δ),

(d 7→ π − δ, d 7→ π − arcsin( a
d+Rmax

)− δ)}
)
,(

( −asin(δ) −Rmax, −a−Rmax), {(d 7→ −π, d 7→ −δ)
(d 7→ −π − δ, d 7→ π − arcsin( a

d+Rmax
)− δ),

(d 7→ 2π + arcsin( a
d+Rmax

)− δ, d 7→ π)}
)
,(

(−a−Rmax, a−Rmax), {(d 7→ −π, d 7→ −δ)

(d 7→ π − δ, d 7→ π)}
)
,(

(a−Rmax, ∞), {(d 7→ −π, d 7→ −δ),
(d 7→ arcsin( a

d+Rmax
)− δ,

d 7→ π − arcsin( a
d+Rmax

)− δ),
(d 7→ π − δ, d 7→ π)}

)}
– If a = 0:

β1,1 =
{(

(−Rmax, ∞), {(d 7→ −π, d 7→ π)}
)}
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� β2,1 is the dθ-interval set for which rk,up(θ) > d + Rmin. Here rk,up(θ) = a/sin(θ + δ) for
some positive a and δ with −π ≤ δ ≤ π.

– If a > 0 and −π2 ≤ δ < 0:

β2,1 =
{(

(−∞, −a−Rmin), {(d 7→ −π, d 7→ −π − δ),
(d 7→ −π − arcsin( a

d+Rmin
)− δ,

d 7→ arcsin( a
d+Rmin

)− δ),
(d 7→ −δ, d 7→ π)}

)
,(

(−a−Rmin, a−Rmin), {(d 7→ −π, d 7→ −π − δ),

(d 7→ −δ, d 7→ π)}
)
,(

(a−Rmin,
−a

sin(δ) −Rmin), {(d 7→ −π, d 7→ −π − δ),
(d 7→ −δ, d 7→ arcsin( a

d+Rmin
)− δ),

(d 7→ π − arcsin( a
d+Rmin

)− δ, d 7→ π)}
)
,(

( −asin(δ) −Rmin, ∞), {(d 7→ −π − arcsin( a
d+Rmin

)− δ, d 7→ −π − δ),

(d 7→ −δ, d 7→ arcsin( a
d+Rmin

)− δ)}
)}

– If a > 0 and −π ≤ δ < −π2 :

β2,1 =
{(

(−∞, −a−Rmin), {(d 7→ −π, d 7→ −π − δ),
(d 7→ −π − arcsin( a

d+Rmin
)− δ,

d 7→ arcsin( a
d+Rmin

)− δ),
(d 7→ −δ, d 7→ π)}

)
,(

(−a−Rmin, a−Rmin), {(d 7→ −π, d 7→ −π − δ),

(d 7→ −δ, d 7→ π)}
)
,(

(a−Rmin,
−a

sin(δ) −Rmin), {(d 7→ −π, d 7→ −2π + arcsin( a
d+Rmin

)− δ),
(d 7→ −π − arcsin( a

d+Rmin
)− δ, d 7→ −π − δ),

(d 7→ −δ, d 7→ π)}
)
,(

( −asin(δ) −Rmin, ∞), {(d 7→ −π − arcsin( a
d+Rmin

)− δ, d 7→ −π − δ),

(d 7→ −δ, d 7→ arcsin( a
d+Rmin

)− δ)}
)}

– If a > 0 and 0 ≤ δ < π
2 :

β2,1 =
{(

(−∞, −a
sin(δ) −Rmin), {(d 7→ −π, d 7→ arcsin( a

d+Rmin
)− δ),

(d 7→ −δ, d 7→ π − δ),
(d 7→ π − arcsin( a

d+Rmin
)− δ, d 7→ π)}

)
,(

( −asin(δ) −Rmin, −a−Rmin), {(d 7→ −π − arcsin( a
d+Rmin

)− δ,
d 7→ arcsin( a

d+Rmin
)− δ),

(d 7→ −δ, d 7→ π − δ)}
)
,(

(−a−Rmin, a−Rmin), {(d 7→ −δ, d 7→ π − δ)}
)
,(

(a−Rmin, ∞), {(d 7→ −δ, d 7→ arcsin( a
d+Rmin

)− δ),

(d 7→ π − arcsin( a
d+Rmin

)− δ, d 7→ π − δ)}
)}
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– If a > 0 and π
2 ≤ δ ≤ π:

β2,1 =
{(

(−∞, −a
sin(δ) −Rmin), {(d 7→ −π, d 7→ arcsin( a

d+Rmin
)− δ),

(d 7→ −δ, d 7→ π − δ),
(d 7→ π − arcsin( a

d+Rmin
)− δ, d 7→ π)}

)
,(

( −asin(δ) −Rmin, −a−Rmin), {(d 7→ −δ, d 7→ π − δ),
(d 7→ π − arcsin( a

d+Rmin
)− δ,

d 7→ 2π + arcsin( a
d+Rmin

)− δ)}
)
,(

(−a−Rmin, a−Rmin), {(d 7→ −δ, d 7→ π − δ)}
)
,(

(a−Rmin, ∞), {(d 7→ −δ, d 7→ arcsin( a
d+Rmin

)− δ),

(d 7→ π − arcsin( a
d+Rmin

)− δ, d 7→ π − δ)}
)}

– If a = 0:
β2,1 =

{(
(−∞, −Rmin), {(d 7→ −π, d 7→ π)}

)}
� β2,2 is the dθ-interval set for which d+ Rmax > d+ Rmin. Since Rmax > Rmin, d+ Rmax >
d+Rmin is true for each value of d and θ:

β2,2 =
{(

(−∞, ∞), {(d 7→ −π, d 7→ π)}
)}

� β3,1 is the dθ-interval set for which rk,up(θ) < rk,max(d, θ). Here rk,up(θ) = a/sin(θ + δ) for
some positive a and δ with −π ≤ δ ≤ π. In this dθ-interval set we leave out the d, θ values
for which rk,up(θ) or rk,max(d, θ) is negative.

Let, for a given value of d, θ−(d) and θ+(d) be the two angles in the range 〈−π, π] for which
rk,up(θ) = rk,max(d, θ):

θ±(d) = atan2

(
A(d)±

√
B(d)

C(d)
,

2a · (d+ rmax)E(d)2 cos2(δ)∓
√
B(d)(2ara + E(d) sin(δ))

E(d)C(d) cos(δ)

)
where

A(d) = 4a2ra · (d+ rmax) + 2a · (d+ rmax)E(d) sin(δ)

B(d) = E(d)3 cos2(δ)(E(d) + 4ara sin(δ)− 4a2)

C(d) = E(d)2 + 4a2r2
a + 4araE(d) sin(δ)

E(d) = (d+ rmax)2 − r2
a

and atan2(x, y) is the angle in the range 〈−π, π] that vector (x, y) makes with the positive
x-axis. In the following equations for dθ-interval set β3,1 we use the following two values to
refer to these intersection points:

θ1(d) = min(θ−(d), θ+(d))

θ2(d) = max(θ−(d), θ+(d))

Now dθ-interval set β3,1 can be described as follows:

– If a = 0:
β3,1 =

{(
(ra − rmax, ∞), {(d 7→ −π, d 7→ π)}

)}
– If δ ≥ 0 and ra sin(δ) < a and a > 0:

β3,1 =
{(

(
√

4a2 + r2
a − 4ara sin(δ)− rmax, ∞), {(d 7→ θ1, d 7→ θ2)}

)}
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– If δ ≥ 0 and ra sin(δ) ≥ a and a > 0:

β3,1 =
{(

(ra − rmax, ∞), {(d 7→ θ1, d 7→ θ2)}
)}

– If δ < 0 and a > 0:

β3,1 =
{(

(
√

4a2 + r2
a − 4ara sin(δ)− rmax, ra − 2a

sin(δ) − rmax), {(d 7→ θ1, d 7→ θ2)}
)
,(

(ra − 2a
sin(δ) − rmax, ∞), {(d 7→ −π, d 7→ θ1),

(d 7→ θ2, d 7→ π)}
)}

� β3,2 is the dθ-interval set for which d+Rmax < rk,max(d, θ)

– If ra − rmax < −Rmax:

β3,2 =
{(

(ra − rmax, rmax − ra − 2Rmax), {(d 7→ −π, d 7→ π)}
)
,(

(rmax − ra − 2Rmax, rmax + ra − 2Rmax), {(d 7→ −θm, d 7→ θm)}
)}

where θm = arccos
(
−(d+rmax)2+2(d+rmax)(d+Rmax)+r2a

2(d+Rmax)ra

)
.

– If ra − rmax ≥ −Rmax:

β3,2 =
{(

(ra − rmax, rmax + ra − 2Rmax), {(d 7→ −θm, d 7→ θm)}
)}

where θm = arccos
(
−(d+rmax)2+2(d+rmax)(d+Rmax)+r2a

2(d+Rmax)ra

)
.

� β3,3 is the dθ-interval set for which d+Rmin < rk,max(d, θ)

– If ra − rmax < −Rmin:

β3,3 =
{(

(ra − rmax, rmax − ra − 2Rmin), {(d 7→ −π, d 7→ π)}
)
,(

(rmax − ra − 2Rmin, rmax + ra − 2Rmin), {(d 7→ −θm, d 7→ θm)}
)}

where θm = arccos
(
−(d+rmax)2+2(d+rmax)(d+Rmin)+r2a

2(d+Rmin)ra

)
.

– If ra − rmax ≥ −Rmin:

β3,3 =
{(

(ra − rmax, rmax + ra − 2Rmin), {(d 7→ −θm, d 7→ θm)}
)}

where θm = arccos
(
−(d+rmax)2+2(d+rmax)(d+Rmin)+r2a

2(d+Rmin)ra

)
.

� β4,1 is the dθ-interval set for which rk,up(θ) > rk,min(d, θ). Here rk,up(θ) = a/sin(θ + δ) for
some positive a and δ with −π ≤ δ ≤ π. In this dθ-interval set we leave out the d, θ values
for which rk,up(θ) or rk,min(d, θ) is negative.

Let, for a given value of d, θ−(d) and θ+(d) be the two angles in the range 〈−π, π] for which
rk,up(θ) = rk,min(d, θ):

θ±(d) = atan2

(
A(d)±

√
B(d)

C(d)
,

2a · (d+ rmin)E(d)2 cos2(δ)∓
√
B(d)(2ara + E(d) sin(δ))

E(d)C(d) cos(δ)

)
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where

A(d) = 4a2ra · (d+ rmin) + 2a · (d+ rmin)E(d) sin(δ)

B(d) = E(d)3 cos2(δ)(E(d) + 4ara sin(δ)− 4a2)

C(d) = E(d)2 + 4a2r2
a + 4araE(d) sin(δ)

E(d) = (d+ rmin)2 − r2
a

and atan2(x, y) is the angle in the range 〈−π, π] that vector (x, y) makes with the positive
x-axis. In the following equations for dθ-interval set β4,1 we use the following two values to
refer to these intersection points:

θ1(d) = min(θ−(d), θ+(d))

θ2(d) = max(θ−(d), θ+(d))

In case there is only one positive intersection between the functions rk,up(θ) and rk,min(d, θ),

the value for θ for this positive intersection is equal to θp1(d) if δ < arccos
(
d+rmin

ra

)
and

otherwise it is equal to θp2(d):

θp1(d) =


θ2(d) if δ = 0

θ1(d) if d ≤ ra − a
sin(δ) − rmin

θ2(d) otherwise

θp2(d) =


θ1(d) if δ = π

θ2(d) if d ≤ ra − a
sin(δ) − rmin

θ1(d) otherwise

Now dθ-interval set β4,1 can be described as follows:

– If a = 0:
β4,1 = ∅

– If 0 ≤ δ ≤ π
2 and ra sin(δ) ≤ a and a > 0:

β4,1 =
{(

(−∞, −ra − rmin), {(d 7→ −δ, d 7→ π − δ)}
)
,(

(−ra − rmin, −ra cos(δ)− rmin), {(d 7→ − arccos
(
d+rmin

ra

)
,

d 7→ arccos
(
d+rmin

ra

)
)}
)
,(

(−ra cos(δ)− rmin, ra cos(δ)− rmin), {(d 7→ −δ, d 7→ θp1(d))}
)
,(

(ra cos(δ)− rmin, ra − rmin), {(d 7→ θ1(d), d 7→ θ2(d))}
)}

– If 0 ≤ δ ≤ π
2 and a < ra sin(δ) ≤ 2a and a > 0:

β4,1 =
{(

(−∞, −ra − rmin), {(d 7→ −δ, d 7→ π − δ)}
)
,(

(−ra − rmin, −ra cos(δ)− rmin), {(d 7→ − arccos
(
d+rmin

ra

)
,

d 7→ arccos
(
d+rmin

ra

)
)}
)
,(

(−ra cos(δ)− rmin, ra cos(δ)− rmin), {(d 7→ −δ, d 7→ θp1(d))}
)
,(

(ra cos(δ)− rmin, F − rmin), {(d 7→ θ1(d), d 7→ θ2(d))}
)}

where F =
√

4a2 + r2
a − 4ara sin(δ).
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– If 0 ≤ δ ≤ π
2 and ra sin(δ) > 2a and a > 0:

β4,1 =
{(

(−∞, −ra − rmin), {(d 7→ −δ, d 7→ π − δ)}
)
,(

(−ra − rmin, −F − rmin), {(d 7→ − arccos
(
d+rmin

ra

)
,

d 7→ arccos
(
d+rmin

ra

)
)}
)
,(

(−F − rmin, −ra cos(δ)− rmin), {(d 7→ − arccos
(
d+rmin

ra

)
, d 7→ θ1(d)),

(d 7→ θ2(d), d 7→ arccos
(
d+rmin

ra

)
)}
)
,(

(−ra cos(δ)− rmin, ra cos(δ)− rmin), {(d 7→ −δ, d 7→ θp1(d))}
)}

where F =
√

4a2 + r2
a − 4ara sin(δ).

– If π
2 < δ ≤ π and ra sin(δ) ≤ a and a > 0:

β4,1 =
{(

(−∞, −ra − rmin), {(d 7→ −δ, d 7→ π − δ)}
)
,(

(−ra − rmin, ra cos(δ)− rmin), {(d 7→ − arccos
(
d+rmin

ra

)
,

d 7→ arccos
(
d+rmin

ra

)
)}
)
,(

(ra cos(δ)− rmin, −ra cos(δ)− rmin), {(d 7→ θp2(d), d 7→ π − δ)}
)
,(

(−ra cos(δ)− rmin, ra − rmin), {(d 7→ θ1(d), d 7→ θ2(d))}
)}

– If π
2 < δ ≤ π and a < ra sin(δ) ≤ 2a and a > 0:

β4,1 =
{(

(−∞, −ra − rmin), {(d 7→ −δ, d 7→ π − δ)}
)
,(

(−ra − rmin, ra cos(δ)− rmin), {(d 7→ − arccos
(
d+rmin

ra

)
,

d 7→ arccos
(
d+rmin

ra

)
)}
)
,(

(ra cos(δ)− rmin, −ra cos(δ)− rmin), {(d 7→ θp2(d), d 7→ π − δ)}
)
,(

(−ra cos(δ)− rmin, F − rmin), {(d 7→ θ1(d), d 7→ θ2(d))}
)}

where F =
√

4a2 + r2
a − 4ara sin(δ).

– If π
2 < δ ≤ π and ra sin(δ) > 2a and a > 0:

β4,1 =
{(

(−∞, −ra − rmin), {(d 7→ −δ, d 7→ π − δ)}
)
,(

(−ra − rmin, −F − rmin), {(d 7→ − arccos
(
d+rmin

ra

)
,

d 7→ arccos
(
d+rmin

ra

)
)}
)
,(

(−F − rmin, ra cos(δ)− rmin), {(d 7→ − arccos
(
d+rmin

ra

)
, d 7→ θ1(d)),

(d 7→ θ2(d), d 7→ arccos
(
d+rmin

ra

)
)}
)
,(

(ra cos(δ)− rmin, −ra cos(δ)− rmin), {(d 7→ θp2(d), d 7→ π − δ)}
)}

where F =
√

4a2 + r2
a − 4ara sin(δ).

– If −π2 ≤ δ < 0 and a > 0:

β4,1 =
{(

(−∞, −ra − rmin), {(d 7→ −π, d 7→ −π − δ)

(d 7→ −δ, d 7→ π)}
)
,(

(−ra − rmin, −ra cos(δ)− rmin), {(d 7→ θ1(d), d 7→ −π − δ),

(d 7→ −δ, d 7→ θ2(d))}
)
,(

(−ra cos(δ)− rmin, ra cos(δ)− rmin), {(d 7→ −δ, d 7→ θ2(d))}
)}
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– If −π ≤ δ < π
2 and a > 0:

β4,1 =
{(

(−∞, −ra − rmin), {(d 7→ −π, d 7→ −π − δ)

(d 7→ −δ, d 7→ π)}
)
,(

(−ra − rmin, ra cos(δ)− rmin), {(d 7→ θ1(d), d 7→ −π − δ),

(d 7→ −δ, d 7→ θ2(d))}
)
,(

(ra cos(δ)− rmin, −ra cos(δ)− rmin), {(d 7→ θ1(d), d 7→ −π − δ)}
)}

� β4,2 is the dθ-interval set for which d+Rmax > rk,min(d, θ)

– If ra > 0 and Rmax ≥ ra + rmin:

β4,2 =
{(

(−Rmax, −ra − rmin), {(d 7→ −π, d 7→ π)}
)
,(

(−ra − rmin, ra − rmin), {(d 7→ −π, d 7→ − arccos(d+rmin

ra
)),

(d 7→ −θm, d 7→ θm),

(d 7→ arccos(d+rmin

ra
), d 7→ π)}

)}
where θm = arccos

(
−(d+rmin)2+2(d+rmin)(d+Rmax)+r2a

2(d+Rmax)ra

)
.

– If ra > 0 and Rmax < ra + rmin:

β4,2 =
{(

(−ra − rmin, rmin + ra − 2Rmax), {(d 7→ −π, d 7→ − arccos(d+rmin

ra
)),

(d 7→ arccos(d+rmin

ra
), d 7→ π)}

)
,(

(rmin + ra − 2Rmax, ra − rmin), {(d 7→ −π, d 7→ − arccos(d+rmin

ra
)),

(d 7→ −θm, d 7→ θm),

(d 7→ arccos(d+rmin

ra
), d 7→ π)}

)}
where θm = arccos

(
−(d+rmin)2+2(d+rmin)(d+Rmax)+r2a

2(d+Rmax)ra

)
.

– If ra = 0 and Rmax ≥ ra + rmin:

β4,2 =
{(

(−Rmax, ∞), {(d 7→ −π, d 7→ π)}
)}

– If ra = 0 and Rmax < ra + rmin and rmin − 2Rmax ≤ −ra − rmin:

β4,2 =
{(

(−ra − rmin, ∞), {(d 7→ −π, d 7→ π)}
)}

– If ra = 0 and Rmax < ra + rmin and rmin − 2Rmax > −ra − rmin:

β4,2 =
{(

(rmin − 2Rmax, ∞), {(d 7→ −π, d 7→ π)}
)}

� β4,3 is the dθ-interval set for which d+Rmin > rk,min(d, θ)

– If ra > 0 and Rmin ≥ ra + rmin:

β4,3 =
{(

(−Rmin, −ra − rmin), {(d 7→ −π, d 7→ π)}
)
,(

(−ra − rmin, ra − rmin), {(d 7→ −π, d 7→ − arccos(d+rmin

ra
)),

(d 7→ −θm, d 7→ θm),

(d 7→ arccos(d+rmin

ra
, d 7→ π)}

)}
where θm = arccos

(
−(d+rmin)2+2(d+rmin)(d+Rmin)+r2a

2(d+Rmin)ra

)
.
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– If ra > 0 and Rmin < ra + rmin:

β4,3 =
{(

(−ra − rmin, rmin + ra − 2Rmin), {(d 7→ −π, d 7→ − arccos(d+rmin

ra
)),

(d 7→ arccos(d+rmin

ra
), d 7→ π)}

)
,(

(rmin + ra − 2Rmin, ra − rmin), {(d 7→ −π, d 7→ − arccos(d+rmin

ra
)),

(d 7→ −θm, d 7→ θm),

(d 7→ arccos(d+rmin

ra
), d 7→ π)}

)}
where θm = arccos

(
−(d+rmin)2+2(d+rmin)(d+Rmin)+r2a

2(d+Rmin)ra

)
.

– If ra = 0 and Rmin ≥ ra + rmin:

β4,3 =
{(

(−Rmin, ∞), {(d 7→ −π, d 7→ π)}
)}

– If ra = 0 and Rmin < ra + rmin and rmin − 2Rmin ≤ −ra − rmin:

β4,3 =
{(

(−ra − rmin, ∞), {(d 7→ −π, d 7→ π)}
)}

– If ra = 0 and Rmin < ra + rmin and rmin − 2Rmin > −ra − rmin:

β4,3 =
{(

(rmin − 2Rmin, ∞), {(d 7→ −π, d 7→ π)}
)}

� β4,4 is the dθ-interval set for which rk,max(d, θ) > rk,min(d, θ). Since this inequality holds
per definition for each value of d and θ, we have:

β4,4 =
{(

(−∞, ∞), {(d 7→ −π, d 7→ π)}
)}
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